Buch, Englisch, Band 14, 310 Seiten, Format (B × H): 164 mm x 242 mm, Gewicht: 1380 g
A Study of the History and Philosophy of Category Theory
Buch, Englisch, Band 14, 310 Seiten, Format (B × H): 164 mm x 242 mm, Gewicht: 1380 g
Reihe: Logic, Epistemology, and the Unity of Science
ISBN: 978-1-4020-9383-8
Verlag: Springer
From a Geometrical Point of View explores historical and philosophical aspects of category theory, trying therewith to expose its significance in the mathematical landscape. The main thesis is that Klein’s Erlangen program in geometry is in fact a particular instance of a general and broad phenomenon revealed by category theory. The volume starts with Eilenberg and Mac Lane’s work in the early 1940’s and follows the major developments of the theory from this perspective. Particular attention is paid to the philosophical elements involved in this development. The book ends with a presentation of categorical logic, some of its results and its significance in the foundations of mathematics.
From a Geometrical Point of View aims to provide its readers with a conceptual perspective on category theory and categorical logic, in order to gain insight into their role and nature in contemporary mathematics. It should be of interest to mathematicians, logicians, philosophers of mathematics and science in general, historians of contemporary mathematics, physicists and computer scientists.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
Weitere Infos & Material
Category Theory and Klein’s Erlangen Program.- Introducing Categories, Functors and Natural Transformations.- Categories as Spaces, Functors as Transformations.- Discovering Fundamental Categorical Transformations: Adjoint Functors.- Adjoint Functors: What They are, What They Mean.- Invariants in Foundations: Algebraic Logic.- Invariants in Foundations: Geometric Logic.- Conclusion.