Marker | Lectures on Infinitary Model Theory | Buch | 978-1-107-18193-9 | sack.de

Buch, Englisch, Band 46, 192 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 437 g

Reihe: Lecture Notes in Logic

Marker

Lectures on Infinitary Model Theory


Erscheinungsjahr 2016
ISBN: 978-1-107-18193-9
Verlag: Cambridge University Press

Buch, Englisch, Band 46, 192 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 437 g

Reihe: Lecture Notes in Logic

ISBN: 978-1-107-18193-9
Verlag: Cambridge University Press


Infinitary logic, the logic of languages with infinitely long conjunctions, plays an important role in model theory, recursion theory and descriptive set theory. This book is the first modern introduction to the subject in forty years, and will bring students and researchers in all areas of mathematical logic up to the threshold of modern research. The classical topics of back-and-forth systems, model existence techniques, indiscernibles and end extensions are covered before more modern topics are surveyed. Zilber's categoricity theorem for quasiminimal excellent classes is proved and an application is given to covers of multiplicative groups. Infinitary methods are also used to study uncountable models of counterexamples to Vaught's conjecture, and effective aspects of infinitary model theory are reviewed, including an introduction to Montalbán's recent work on spectra of Vaught counterexamples. Self-contained introductions to effective descriptive set theory and hyperarithmetic theory are provided, as is an appendix on admissible model theory.

Marker Lectures on Infinitary Model Theory jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Introduction; Part I. Classical Results in Infinitary Model Theory: 1. Infinitary languages; 2. Back and forth; 3. The space of countable models; 4. The model existence theorem; 5. Hanf numbers and indiscernibles; Part II. Building Uncountable Models: 6. Elementary chains; 7. Vaught counterexamples; 8. Quasinimal excellence; Part III. Effective Considerations: 9. Effective descriptive set theory; 10. Hyperarithmetic sets; 11. Effective aspects of L?1,? 12. Spectra of Vaught counterexamples; Appendix A. N1-free abelian groups; Appendix B. Admissibility; References; Index.


Marker, David
David Marker is LAS Distinguished Professor of Mathematics at the University of Illinois, Chicago, and a Fellow of the American Mathematical Society. His main area of research is model theory and its connections to algebra, geometry and descriptive set theory. His book, Model Theory: An Introduction, is one of the most frequently used graduate texts in the subject and was awarded the Shoenfield Prize for expository writing by the Association for Symbolic Logic.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.