Buch, Englisch, 203 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Universitext
Buch, Englisch, 203 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Universitext
ISBN: 978-3-319-90232-6
Verlag: Springer International Publishing
Requiring no more than a basic knowledge of abstract algebra, this textbook presents the basics of algebraic number theory in a straightforward, "down-to-earth" manner. It thus avoids local methods, for example, and presents proofs in a way that highlights key arguments. There are several hundred exercises, providing a wealth of both computational and theoretical practice, as well as appendices summarizing the necessary background in algebra.
Now in a newly typeset edition including a foreword by Barry Mazur, this highly regarded textbook will continue to provide lecturers and their students with an invaluable resource and a compelling gateway to a beautiful subject.
From the reviews:
“A thoroughly delightful introduction to algebraic number theory” – Ezra Brown in the Mathematical Reviews
“An excellent basis for an introductory graduate course in algebraic number theory” – Harold Edwards in the Bulletin of the American Mathematical Society
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1: A Special Case of Fermat’s Conjecture.- 2: Number Fields and Number Rings.- 3: Prime Decomposition in Number Rings.- 4: Galois Theory Applied to Prime Decomposition.- 5: The Ideal Class Group and the Unit Group.- 6: The Distribution of Ideals in a Number Ring.- 7: The Dedekind Zeta Function and the Class Number Formula.- 8: The Distribution of Primes and an Introduction to Class Field Theory.- Appendix A: Commutative Rings and Ideals.- Appendix B: Galois Theory for Subfields of C.- Appendix C: Finite Fields and Rings.- Appendix D: Two Pages of Primes.- Further Reading.- Index of Theorems.- List of Symbols.