E-Book, Englisch, 338 Seiten, eBook
Reihe: Trends in Mathematics
Manuilov / Mishchenko / Nazaikinskii Differential Equations on Manifolds and Mathematical Physics
1. Auflage 2022
ISBN: 978-3-030-37326-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Dedicated to the Memory of Boris Sternin
E-Book, Englisch, 338 Seiten, eBook
Reihe: Trends in Mathematics
ISBN: 978-3-030-37326-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Parametrix and localized solutions for linearized equations of gas dynamics.- Laplacians on generalized smooth distributions as C*-algebra multipliers.- C*-algebras generated by dynamical systems, and applications to nonlocal PDO.- The equivariant Atiyah-Patodi-Singer theorem.- Representations of Maslov's canonical operator in a neighborhood of caustics.- Resurgent analysis of singularly perturbed differential systems.- Dual linear programming problem and one-dimensional Gromov minimal fillings.- Complete semiclassical spectral asymptotics for periodic and almost periodic perturbations of constant operators.- Analytic properties of the Hörmander solution of the wave equation.- Derivations of group algebras and Hohschild cohomology.- Mellin operators in weighted corner Sobolev spaces.- Quantum Hall effect and noncommutative geometry.- Flat vector bundles and open coverings.- A class of Fredholm boundary value problems for the wave equation with conditions on the entire boundary.- Motion of mechanical systems across the singular points.- Large-time decay of solutions to the Kawahara equation.- Applications of the Maslov index to phase reconstruction problems.- The complex homotopy principle of Grauert and Gromov for algebras of pseudo differential operators.- On the Fredholm solvability of operators associated with Morse-Smale diffeomorphisms.- Geometrical model of the one-dimensional double pendulum phase space.- Solutions for a nonlinear elliptic problem involving a variable exponent and measure data in unbounded domains.- Periodic internal layers in reaction-diffusion-advection equations with modular type advection.- Model of protosphera.- Pseudo-differential operators, equations, and elliptic boundary value problems.