Proceedings of the Special Interest Group on Mathematical Programming Symposium Conducted by the Computer Sciences Department at the University of Wisconsin-Madison, July 11-13, 1977
E-Book, Englisch, 486 Seiten, Web PDF
ISBN: 978-1-4832-6032-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Nonlinear Programming 3;4
3;Copyright Page;5
4;Table of Contents;6
5;CONTRIBUTORS;8
6;PREFACE;10
7;CHAPTER 1. MONOTONE OPERATORS AND AUGMENTED LAGRANGIAN METHODS IN NONLINEAR PROGRAMMING;12
7.1;ABSTRACT;12
7.2;1. INTRODUCTION;13
7.3;2. MONOTONE OPERATORS AND VARIATIONAL INEQUALITIES;17
7.4;3. PROXIMAL POINT ALGORITHM FOR MONOTONE OPERATORS;22
7.5;4. APPLICATION TO CONVEX PROGRAMMING;25
7.6;5. APPLICATION TO VARIATIONAL INEQUALITIES;31
7.7;REFERENCES;35
8;CHAPTER 2. THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS;38
8.1;ABSTRACT;38
8.2;1. INTRODUCTION;39
8.3;2. SOME CONDITIONS AND THEIR CONSEQUENCES;44
8.4;3. A GENERAL THEOREM EOR SUPERLINEAR CONVERGENCE;52
8.5;4. THE DEFINITION OF Bk+1;57
8.6;5. AN R-SUPERLINEAR CONVERGENCE THEOREM;67
8.7;ACKNOWLEDGMENT;72
8.8;REFERENCES;73
9;CHAPTER 3. A HYBRID METHOD FOR NONLINEAR PROGRAMMING;76
9.1;ABSTRACT;76
9.2;1. INTRODUCTION;77
9.3;2. THE METHOD;80
9.4;3. GLOBAL PROPERTIES;87
9.5;4. LOCAL PROPERTIES;95
9.6;5. CONCLUSIONS;105
9.7;REFERENCES;106
10;CHAPTER 4. TWO-PHASE ALGORITHM FOR NONLINEAR CONSTRAINT PROBLEMS;108
10.1;ABSTRACT;108
10.2;1. INTRODUCTION;109
10.3;2. LINEARIZATION OF NONLINEAR CONSTRAINTS;114
10.4;3. EXTERNAL SQUARED PENALTY;120
10.5;4. PRACTICAL IMPLEMENTATION;123
10.6;5. DISCUSSION;128
10.7;REFERENCES;134
11;CHAPTER 5. QUASI-NEWTON METHODS FOR EQUALITY CONSTRAINED OPTIMIZATION: EQUIVALENCE OF EXISTING METHODS AND A NEW IMPLEMENTATION;136
11.1;1. INTRODUCTION;136
11.2;2. THE MULTIPLIER EXTENSION QUASI-NEWTON METHODS;144
11.3;3. THE STRUCTURED MULTIPLIER EXTENSION QUASI-NEWTON METHODS;145
11.4;4. THE MULTIPLIER UPDATE QUASI-NEWTON METHODS;147
11.5;5. THE BALANCED MULTIPLIER UPDATE QUASI-NEWTON METHODS;149
11.6;6. THE QUADRATIC PROGRAMMING QUASI-NEWTON METHOD;152
11.7;7. THE ADDITION OF SUPERSTRUCTURE;157
11.8;8. THE MULTIPLIER SUBSTITUTION QUASI-NEWTON METHODS;160
11.9;9. THE STRUCTURED MULTIPLIER SUBSTITUTION QUASI-NEWTON METHODS;162
11.10;10. THE BEST OF THE MULTIPLIER QUASI-NEWTON METHODS;164
11.11;11. AN IMPLEMENTATION BASED ON THE SVD;171
11.12;REFERENCES;173
12;CHAPTER 6. AN IDEALIZED EXACT PENALTY FUNCTION;176
12.1;ABSTRACT;176
12.2;1. INTRODUCTION;177
12.3;2. MOVEMENT OF A PARTICLE UNDER DIFFERENT FORCES;178
12.4;3. FLETCHER'S EXACT PENALTY FUNCTION (EQUALITY CASE);188
12.5;4. THE INEQUALITY CONSTRAINED PROBLEM;193
12.6;5. FLETCHER'S EXACT PENALTY FUNCTION (INEQUALITY CASE);202
12.7;REFERENCES;206
13;CHAPTER 7. EXACT PENALTY ALGORITHMS FOR NONLINEAR PROGRAMMING;208
13.1;ABSTRACT;208
13.2;1. INTRODUCTION;209
13.3;2. DEFINITIONS AND NOTATIONS;211
13.4;3. STATIONARY POINTS OF THE EXACT PENALTY FUNCTION AND OPTIMALITY FUNCTIONS;212
13.5;4. DESCRIPTION OF THE ALGORITHM;215
13.6;5. RATE OF CONVERGENCE OF THE EXACT PENALTY ALGORITHMS;227
13.7;6. COMPUTATIONAL RESULTS;232
13.8;7. ADDITIONAL RESULTS;233
13.9;ACKNOWLEDGMENTS;234
13.10;REFERENCES;235
14;CHAPTER 8. A VARIABLE METRIC METHOD FOR LINEARLY CONSTRAINED MINIMIZATION PROBLEMS;236
14.1;1. INTRODUCTION;236
14.2;2. GENERAL DESCRIPTION OF THE ALGORITHM;237
14.3;3. DETAILED STATEMENT OF THE ALGORITHM;245
14.4;4. SUPERLINEAR CONVERGENCE;250
14.5;REFERENCES;254
15;CHAPTER 9. SOLVING SYSTEMS OF NONLINEAR EQUATIONS BY BROYDEN'S METHOD WITH PROJECTED UPDATES;256
15.1;ABSTRACT;256
15.2;1. INTRODUCTION;257
15.3;2. THE NEW METHOD;260
15.4;3. BEHAVIOR ON LINEAR OR PARTLY LINEAR PROBLEMS;269
15.5;4. LOCAL Q-SUPERLINEAR CONVERGENCE ON NONLINEAR PROBLEMS;276
15.6;5. COMPUTATIONAL RESULTS;285
15.7;6. SUMMARY AND CONCLUSIONS;290
15.8;7. REFERENCES;291
16;CHAPTER 10. AT THE INTERFACE OF MODELING AND ALGORITHMS RESEARCH;294
16.1;ABSTRACT;294
16.2;I. INTRODUCTION AND SUMMARY;295
16.3;II. THE MID-1976 PILOT—A SUMMARY DESCRIPTION;297
16.4;III. COMPUTER SOLUTION OF THE PILOT MODEL;302
16.5;IV. TESTING ALGORITHMS AND DEVELOPING CODES;306
16.6;V. WELFARE EQUILIBRIUM VARIANT OF PILOT;309
16.7;REFERENCES;312
17;CHAPTER 11. MODELING COMBINATORIAL MATHEMATICAL PROGRAMMING PROBLEMS BY NETFORMS: AN ILLUSTRATIVE APPLICATION;314
17.1;ABSTRACT;314
17.2;INTRODUCTION;315
17.3;THE PROBLEM;318
17.4;A NETFORM MODEL;322
17.5;A MORE ADVANCED COMBINATORIAL REQUIREMENT;327
17.6;PATHS WITHOUT UNIQUE NODES;333
17.7;PATH SEPARATIONS FROM THE ORIGIN;338
17.8;HANDLING THE SINGLE PATH RESTRICTION;342
17.9;TELESCOPING THE NETFORM FOR SOLUTION EFFICIENCY;344
17.10;CONCLUSION;345
17.11;REFERENCES;346
18;CHAPTER 12. ON THE COMPARATIVE EVALUATION OF ALGORITHMS FOR MATHEMATICAL PROGRAMMING PROBLEMS;348
18.1;ABSTRACT;348
18.2;1. INTRODUCTION;350
18.3;2. MEASUREMENT OF COMPUTATIONAL SPEED;353
18.4;3. TIME-EQUIVALENT NUMBER OF FUNCTION EVALUATIONS;356
18.5;4. NUMERICAL EXPERIMENTS;360
18.6;5. NUMERICAL RESULTS;364
18.7;6. CONCLUSIONS AND RECOMMENDATIONS;368
18.8;REFERENCES;370
19;CHAPTER 13. A SPECIAL CLASS OF LARGE QUADRATIC PROGRAMS;372
19.1;ABSTRACT;372
19.2;1. INTRODUCTION;373
19.3;2. PRELIMINARY RESULTS;375
19.4;3. ALGORITHMS;380
19.5;4. APPLICATIONS AND COMPUTATIONAL EXPERIENCE;388
19.6;TABLE;395
19.7;REFERENCES;399
20;CHAPTER 14. COMPUTING STATIONARY POINTS, AGAIN;402
20.1;1. INTRODUCTION;402
20.2;2. A SPECIAL CASE;404
20.3;3. OVERVIEW OF TRANSFORMATION;406
20.4;4. THE GENERAL CASE;407
20.5;5 . AN EXAMPLE;411
20.6;6. APPENDIX;415
20.7;BIBLIOGRAPHY;416
21;CHAPTER 15. A COMBINATORIAL LEMMA FOR FIXED POINT ALGORITHMS;418
21.1;ABSTRACT;418
21.2;1. INTRODUCTION;419
21.3;2. MAIN RESULT;421
21.4;3. SPERNER'S LEMMA FOR POLYHEDRA;429
21.5;4. ALGORITHMS FOR FINDING APPROXIMATELY FIXED POINTS OF CONTINUOUS FUNCTIONS MAPPING A SIMPLEX INTO ITSELF;432
21.6;REFERENCES;438
22;CHAPTER 16. MINIMISATION DE FONCTIONS LOCALEMENT LIPSCHITZIENNES: APPLICATIONS A LA PROGRAMMATION MI-CONVEXE, MI-DIFFERENTIABLE;440
22.1;INTRODUCTION;440
22.2;I. UNE MÉTHODE GÉNÉRALE POUR LA MINIMISATION SANS CONTRAINTES DE FONCTIONS LOCALEMENT LIPSCHITZIENNES;442
22.3;II. APPLICATIONS À LA PROGRAMMATION MI-CONVEXE, MI-DIFFÉRENTIABLE;450
22.4;III. MINIMISATION DE FONCTIONS LOCALEMENT LIPSCHITZIENNES SUR DES FERMÉS;466
22.5;BIBLIOGRAPHIE;470
23;CHAPTER 17. A MODIFIED NEWTON ALGORITHM FOR FUNCTIONS OVER CONVEX SETS;472
23.1;ABSTRACT;472
23.2;1. INTRODUCTION;473
23.3;2. ALGORITHM;474
23.4;3. CONVERGENCE ANALYSIS;476
23.5;4. THE FINITE-DIMENSIONAL CASE;480
23.6;5. NUMERICAL EXAMPLES;482
23.7;ACKNOWLEDGEMENTS;483
23.8;REFERENCES;484
24;SUBJECT INDEX;486