Manas-Zloczower Mixing and Compounding of Polymers
1. Auflage 2012
ISBN: 978-3-446-43371-7
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Theory and Practice
E-Book, Englisch, 1182 Seiten
ISBN: 978-3-446-43371-7
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Part I: Mechanisms and Theory
Basic Concepts - Mixing of Miscible Fluids - Mixing of Immiscible Fluids - Dispersive Mixing of Solid Additives - Distributive Mixing - Distribution Functions and Measures of Mixing
Part II: Mixing Equipment- Modeling, Simulation, Visualization
Batch Equipment Simulation - Batch Equipment Visualization - Continuous Equipment Simulation - Dispersive Mixing Devices in Single Screw - Twin Rotor Mixers - Co-Kneader - Visualization - Scale-up of Mixing Equipment - Scale-down of Mixing Equipment
Part III Material Consideration, Properties and Characterization
Solid additives (inorganic)- Solid additives (organic)- Compatibilizers (mechanisms, theory) - Material Consideration for Mixing at Nanoscale - Effect of Mixing on Properties of Compounds - Effect of Mixing on Rubber Properties
Part IV Mixing Practices
Internal Mixers - Single Screw Extruders - Twin Screw Extruders - Intermeshing Twin Screw Extruders - Reciprocating Screws - Reactive Compounding- Farrel Continuous Mixer
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;8
2;Contents;10
3;Part I: Mechanisms and Theory;26
3.1;1Basic Concepts;28
3.2;2Mixing of Miscible Liquids;30
3.2.1;2.1Introduction;30
3.2.2;2.2Continuum Analysis of Stretching;33
3.2.2.1;2.2.1Deformation Analysis;33
3.2.2.2;2.2.2Rate Analysis;38
3.2.2.3;2.2.3Interface Stretching in Simple Flows;41
3.2.2.3.1;2.2.3.1Simple Shear: Deformation Analysis;41
3.2.2.3.2;2.2.3.2Simple Shear: Rate Analysis;42
3.2.2.3.3;2.2.3.3Planar Elongation: Deformation Analysis;43
3.2.2.3.4;2.2.3.4Planar Elongation: Rate Analysis;44
3.2.2.4;2.2.4Stretching Behavior and Mixing Flows;45
3.2.3;2.3Chaos and Chaotic Flows;46
3.2.3.1;2.3.1An Example Flow;46
3.2.3.2;2.3.2Poincaré Sections;47
3.2.3.3;2.3.3Lyapunov Exponents;50
3.2.3.4;2.3.4Periodic Points;53
3.2.4;2.4Mixing in Chaotic Flows;54
3.2.4.1;2.4.1Global Chaos;54
3.2.4.2;2.4.2Universal Stretching Properties;55
3.2.4.2.1;2.4.2.1Growth of Average Stretch;56
3.2.4.2.2;2.4.2.2Global Stretching Distribution;57
3.2.4.2.3;2.4.2.3Spatial Distribution of Stretch;59
3.2.4.2.4;2.4.2.4Implications for Flow Selection;59
3.2.5;2.5Other Considerations;61
3.2.5.1;2.5.1Rheological Effects;61
3.2.5.2;2.5.2Molecular Diffusion;61
3.2.6;2.6Summary;62
3.2.7;Acknowledgements;63
3.2.8;References;63
3.3;3Mixing of Immiscible Liquids;66
3.3.1;3.1Introduction;67
3.3.2;3.2Mixing Mechanisms;68
3.3.3;3.3Distributive Mixing (Ca >> Cacrit);71
3.3.3.1;3.3.1Affine Deformation;71
3.3.3.2;3.3.2Efficient Mixing: Stretching, Folding, and Reorienting;73
3.3.3.3;3.3.3Static Mixers;75
3.3.3.3.1;3.3.3.1Multiflux;76
3.3.3.3.2;3.3.3.2Ross;78
3.3.3.3.3;3.3.3.3Sulzer;79
3.3.3.3.4;3.3.3.4Kenics;81
3.3.3.4;3.3.4Optimization Kenics Mixers;82
3.3.3.4.1;3.3.4.1Optimizing RL Designs;82
3.3.3.4.2;3.3.4.2Optimizing for Non-Newtonian Fluids;83
3.3.3.4.3;3.3.4.3Optimizing RR Designs;85
3.3.3.4.4;3.3.4.4Scale-up: Use of Structure Radius and Scale of Segregation;86
3.3.3.4.5;3.3.4.5Mapping the Structure;88
3.3.3.4.6;3.3.4.6Conclusions;91
3.3.3.5;3.3.5Dynamic Mixers;91
3.3.3.5.1;3.3.5.1Co-Rotating Twin-Screw Extruders;91
3.3.3.5.2;3.3.5.2Single Screw Extruders;94
3.3.3.5.3;3.3.5.3The Rotational Arc Mixer (RAM);96
3.3.3.6;3.3.6Understanding Mixing: the Lid-Driven Cavity Flow;96
3.3.3.6.1;3.3.6.1Geometry;96
3.3.3.6.2;3.3.6.2Periodic Points;97
3.3.3.6.3;3.3.6.3The Mapping Method;101
3.3.3.6.4;3.3.6.4Accuracy of the Mapping Method;102
3.3.3.6.5;3.3.6.5Optimization by Using the Mapping Method;103
3.3.3.6.6;3.3.6.6Adding Inertia;109
3.3.3.6.7;3.3.6.73-D Cavity;111
3.3.4;3.4Dispersive Mixing Ca ˜ Cacrit;115
3.3.4.1;3.4.1Rayleigh Disturbances;115
3.3.4.2;3.4.2Disintegration of Threads at Rest;117
3.3.4.3;3.4.3Disintegration of Threads During Flow;121
3.3.4.4;3.4.4Flow Classification;123
3.3.4.5;3.4.5Drop Deformation and Breakup;127
3.3.4.6;3.4.6Step-Wise Equilibrium versus Dynamic Breakup;133
3.3.4.6.1;3.4.6.1Two Mechanisms;133
3.3.4.6.2;3.4.6.2Plane Hyperbolic Flow;134
3.3.4.6.3;3.4.6.3Simple Shear Flow;135
3.3.4.7;3.4.7Theoretical Models for Drop Evolution;139
3.3.5;3.5Coalescence and Influence of Surfactants;149
3.3.5.1;3.5.1Collision of Drops;149
3.3.5.2;3.5.2Film Drainage;150
3.3.5.2.1;3.5.2.1Theoretical;150
3.3.5.2.2;3.5.2.2Restrictions of the Drainage Models;154
3.3.5.2.3;3.5.2.2Drainage Probability;155
3.3.5.2.4;3.5.2.3Experimental;157
3.3.5.3;3.5.3Coalescence Probability;158
3.3.5.4;3.5.4Combination of Breakup and Coalescence;160
3.3.5.5;3.5.5Influence of Surfactants on Deformation;163
3.3.5.5.1;3.5.5.1Surface Tension Gradients;164
3.3.5.5.2;3.5.5.2Equation of State;165
3.3.5.5.3;3.5.5.3Drop Shapes;165
3.3.5.5.4;3.5.5.4Modes of Drop Breakage;165
3.3.5.6;3.5.6Influence of Surfactants on Coalescence;172
3.3.6;3.6Polymer Blending in Practice;172
3.3.6.1;3.6.1A Two-Zone Model;172
3.3.6.1.1;3.6.1.1Principle;172
3.3.6.1.2;3.6.1.2Numerical Approach;173
3.3.6.1.3;3.6.1.3Effective Viscosity;174
3.3.6.1.4;3.6.1.4Results;175
3.3.6.1.5;3.6.1.5Influence of Material Parameters;177
3.3.6.1.6;3.6.1.6Influence of Processing Conditions;178
3.3.6.2;3.6.2Passage through a Die;180
3.3.6.3;3.6.3Phase Inversion;181
3.3.6.4;3.6.4Journal Bearing: a Second Model Flow;183
3.3.6.5;3.6.5Dynamics of Mixing;184
3.3.7;3.7Rheology and Morphology;185
3.3.7.1;3.7.1Constitutive Modeling of Dispersive Mixtures;185
3.3.7.2;3.7.2Diffuse Interface Modeling;190
3.3.8;3.8Conclusions;195
3.3.9;APPENDIX 3.A: Determination of Interfacial Tension;197
3.3.10;Nomenclature;199
3.3.11;References;202
3.4;4Dispersive Mixing of Solid Additives;208
3.4.1;4.1Introduction;208
3.4.2;4.2Continuum Dispersion Models;210
3.4.2.1;4.2.1Agglomerate Structure and Cohesiveness;210
3.4.2.2;4.2.2Models for Agglomerate Dispersion;212
3.4.3;4.3Discrete Dispersion Models;224
3.4.4;4.4Dispersion Mechanisms and Modelling Based on Experimental Observations;228
3.4.5;4.5Concluding Remarks;235
3.4.6;Nomenclature;236
3.4.7;References;239
3.5;5A Kinematic Approach to Distributive Mixing;242
3.5.1;5.1Introduction;242
3.5.2;5.2Kinematic Approach to Distributive Mixing;243
3.5.3;5.3Application to Simple Flow Configurations;245
3.5.3.1;5.3.1Simple Shear Flow;245
3.5.3.2;5.3.2Pure Elongational Flow;246
3.5.4;5.4Application to a Two-Dimensional Flow Configuration;248
3.5.5;5.5Experimental Study of a Two-Dimensional, Nonstationary Flow;252
3.5.6;5.6Application to Three-Dimensional Flow Configurations;255
3.5.6.1;5.6.1Periodic Shearing Flow;255
3.5.6.2;5.6.2Non-Stationary Flow within an Internal Mixer;258
3.5.7;5.7Discussion;260
3.5.8;Nomenclature;263
3.5.9;References;264
3.6;6Number of Passage Distribution Functions;266
3.6.1;6.1Introduction;266
3.6.2;6.2Theory of Number of Passage Distribution (NPD) Functions;267
3.6.3;6.3NPD Functions in Batch and Flow Recirculating Systems;268
3.6.4;6.4NPD Functions in Some Model Systems;270
3.6.4.1;6.4.1Well-Stirred Batch Vessel with Recirculation;270
3.6.4.2;6.4.2Plug Flow with Recirculation;271
3.6.4.3;6.4.3Well-Stirred Continuous Mixing Vessel with Recirculation;272
3.6.5;6.5Applications of NPD Functions to Dispersive Mixing;273
3.6.5.1;6.5.1Dispersive Mixing;273
3.6.5.2;6.5.2Modeling of Mixers;274
3.6.6;Acknowledgment;274
3.6.7;References;275
3.7;7Mixing Measures;276
3.7.1;7.1Introduction;276
3.7.2;7.2Entropic Measures;278
3.7.2.1;7.2.1Shannon Entropy;278
3.7.2.2;7.2.2Renyi Entropies;278
3.7.2.2.1;7.2.2.1Applications;279
3.7.2.3;7.2.3Multi-Component Shannon Entropy;281
3.7.2.3.1;7.2.3.1Application: Simultaneous Dispersive and Distributive Mixing Index;283
3.7.2.4;7.2.4Modified Multi-Component Shannon Entropy;284
3.7.2.4.1;7.2.4.1Applications to Extruders;285
3.7.2.4.2;7.2.4.2Applications to Micromixers;287
3.7.2.5;7.2.5Renyi Generalized Entropies and Fractal Properties;288
3.7.2.5.1;7.2.5.1Applications;288
3.7.3;7.3Summary;289
3.7.4;References;290
4;Part II: Mixing Equipment – Modeling, Simulation, Visualization;292
4.1;8Flow Field Analysis of a Banbury Mixer;294
4.1.1;8.1Introduction;294
4.1.2;8.2Flow Simulations;297
4.1.2.1;8.2.1Description of Method;297
4.1.2.2;8.2.2Velocity Profiles and Pressure Distributions;299
4.1.3;8.3Flow Field Characterization;303
4.1.3.1;8.3.1Dispersive Mixing;303
4.1.3.2;8.3.2Distributive Mixing;309
4.1.4;8.4Summary and Conclusions;320
4.1.5;Nomenclature;320
4.1.6;References;321
4.2;9CFD Simulations of Static Mixers: A Survey;324
4.2.1;9.1Static Mixers in the Polymer Industry;324
4.2.2;9.2Performance Criteria;326
4.2.2.1;9.2.1Pressure Drop;327
4.2.2.2;9.2.2Shearing Action;328
4.2.2.3;9.2.3Mixing Performance;329
4.2.2.4;9.2.4Mixing Homogeneity;331
4.2.2.5;9.2.5CFD Methods;332
4.2.3;9.3Numerical Modelling Principles;334
4.2.3.1;9.3.1Simulation Flowchart;334
4.2.3.2;9.3.2Equations of Change;335
4.2.3.3;9.3.3Discretization;336
4.2.3.4;9.3.4Solvers;338
4.2.3.5;9.3.5Particle Tracking;339
4.2.4;9.4Summary of the Main Hydrodynamic Predictions;341
4.2.4.1;9.4.1Pressure Drop;341
4.2.4.2;9.4.2Poincaré Maps;343
4.2.4.3;9.4.3Residence Time Distribution;343
4.2.4.4;9.4.4Overall Deformation and Shear;344
4.2.4.5;9.4.5Transverse Flow;345
4.2.5;9.5Summary of the Main Results on Mixing Evaluation;346
4.2.5.1;9.5.1Segregation Scale;346
4.2.5.2;9.5.2Intensity of Segregation;347
4.2.5.3;9.5.3Chaos Theory;348
4.2.6;9.6Mixer Performance Comparison;349
4.2.7;9.7Other Mixing Evaluation Studies;351
4.2.8;9.8Simulation Methods, Software Tools;351
4.2.9;9.9Industrial Perspective and what the Future Holds;354
4.2.9.1;9.9.1Single Phase Fluids;354
4.2.9.2;9.9.2Multiphase Fluids;354
4.2.9.3;9.9.3Multi-Scale Modeling;355
4.2.10;Nomenclature;356
4.2.11;References;358
4.3;10Flow Visualization in Internal Mixers;362
4.3.1;10.1Introduction;362
4.3.2;10.2Historical Development of Internal Mixers;364
4.3.3;10.3Flow Visualization;367
4.3.3.1;10.3.1Flow Visualization by Various Sensors;370
4.3.3.2;10.3.2Flow Visualization through Transparent Windows;376
4.3.4;References;384
4.4;11Continuous Equipment Simulation – Single Screw;388
4.4.1;11.1Introduction;388
4.4.2;11.2General Equations for the Creeping Flows of Generalized-Newtonian Fluids;389
4.4.3;11.3Geometrical Considerations and Approximations;392
4.4.4;11.4Overview of Previous Work;394
4.4.5;11.5Description of Applied Modeling Approaches;396
4.4.5.1;11.5.1Two-Dimensional Formulation;396
4.4.5.2;11.5.2Three-Dimensional Formulation;398
4.4.6;11.6Predicted Results;401
4.4.6.1;11.6.1Isothermal Flow of a Newtonian Fluid;401
4.4.6.2;11.6.2Isothermal Flow of a Power-Law Non-Newtonian Fluid;402
4.4.6.3;11.6.3Non-Isothermal Flow of Non-Newtonian Fluids;405
4.4.7;Nomenclature;410
4.4.8;References;412
4.5;12Modeling Flow in Twin Screw Extrusion;414
4.5.1;12.1Introduction;414
4.5.2;12.2Modular Self-Wiping Co-Rotating Twin Screw Extruders;416
4.5.2.1;12.2.1Technology;416
4.5.2.2;12.2.2Flow in Individual Elements;417
4.5.2.3;12.2.3Heat Balance;421
4.5.2.4;12.2.4Melting;422
4.5.2.5;12.2.5Composite Modular Machine Behavior;423
4.5.2.6;12.2.6Global Machine Software;424
4.5.3;12.3Tangential Counter-Rotating Twin Screw Extruders;425
4.5.3.1;12.3.1Technology;425
4.5.3.2;12.3.2Flow in Individual Elements;425
4.5.3.3;12.3.3Heat Balance;429
4.5.3.4;12.3.4Composite Modular Machine Behavior;430
4.5.4;12.4Intermeshing Counter-Rotating Twin Screw Extruders;431
4.5.4.1;12.4.1Technology;431
4.5.4.2;12.4.2Flow in Individual Elements;433
4.5.4.3;12.4.3Melting;434
4.5.4.4;12.4.4Composite Modular Machine Behavior;434
4.5.5;12.5Continuous Mixers;435
4.5.5.1;12.5.1Technology;435
4.5.5.2;12.5.2Flow Modeling;438
4.5.6;References;439
4.6;13Continuous Equipment Simulation – Co-Kneader;444
4.6.1;13.1Introduction;444
4.6.2;13.2Machine Geometry and Working Principle;446
4.6.2.1;13.2.1Screw Elements, Pins, and Barrel Liners;446
4.6.2.2;13.2.2Melting;449
4.6.3;13.3Modeling the Co-Kneader;451
4.6.4;13.4Newtonian, Isothermal Analysis of Continuous Mixers;452
4.6.4.1;13.4.1Twin-Screw Extruders;452
4.6.4.2;13.4.2The Co-Kneader;456
4.6.5;13.5Mixing;459
4.6.6;13.6Experimental;460
4.6.6.1;13.6.1Throughput versus Pressure Characteristic;462
4.6.6.2;13.6.2Filled Length;465
4.6.6.3;13.6.3Pressure Gradients;466
4.6.6.4;13.6.4Residence Time Distribution;468
4.6.7;13.7Nonisothermal, Non-Newtonian Analysis;470
4.6.8;13.8Outlook;470
4.6.9;Nomenclature;472
4.6.10;References;473
4.7;14Continuous Equipment Simulation – Mixing Devices;476
4.7.1;14.1Static Mixers;477
4.7.2;14.2Mixing Heads in Single Screw Extrusion;489
4.7.3;14.3Conclusions;495
4.7.4;References;495
4.8;15 Continuous Process Visualization: Visual Observation, On-Line Monitoring, Model-Fluid Extrusion and Simulation;498
4.8.1;15.1Introduction;498
4.8.1.1;15.1.1Overview;500
4.8.2;15.2Techniques for Visualization of Polymer Extrusion and Compounding;504
4.8.2.1;15.2.1Experimental Simulation with a Simple Mixer and Real Material;504
4.8.2.1.1;15.2.1.1Melting of Polymer Pellets;504
4.8.2.1.2;15.2.1.2Melting of Polymer Powders;509
4.8.2.1.3;15.2.1.3Melting of Polymer Blends;509
4.8.2.1.4;15.2.1.4Melting of Polymer/Rubber Blends;512
4.8.2.1.5;15.2.1.5Visualization of Morphological Transformations during Mixed Melting: the Phase Inversion Phenomenon;514
4.8.2.1.6;15.2.1.6 Visualization of Morphological Transformations during Mixed Melting: Direct Observation and Torque Monitoring of Miscible Blends with Extremely Low Viscosity Ratio (= 0.01);516
4.8.2.2;15.2.2Model Fluid Extrusion: Real Mixer with a Simple Fluid;517
4.8.2.2.1;15.2.2.1Visualization of Flow in Extruders using Model Fluids;518
4.8.2.2.2;15.2.2.2Visualization of Glass Fiber Dispersion in a Model Fluid;520
4.8.2.3;15.2.3Processing with Continuous Equipment and Real Polymers;521
4.8.2.3.1;15.2.3.1Visualization of the Extrudate at the Die Exit;521
4.8.2.3.2;15.2.3.2Visualization of Fluid Flows in a Fixed Geometry;522
4.8.2.3.3;15.2.3.3In-Line Sampling;525
4.8.2.3.4;15.2.3.4On-Line Microscopy;525
4.8.2.3.5;15.2.3.5Point Measurements: Characterization of Melting and Mixing Time with the Residence Time Distribution;529
4.8.2.3.6;15.2.3.6Visualization of Solid Transport and the Onset of Melting by Direct Observation;539
4.8.2.3.7;15.2.3.7Visualization of the Melting Zone by Direct Observation;541
4.8.2.3.8;15.2.3.8Visualization and On-line Monitoring using Highly-Instrumented Extruders;545
4.8.2.3.9;15.2.3.9Visualization of the Melting of Polymer Blends;556
4.8.2.3.10;15.2.3.10Visualization of Phase Inversion during Polymer Blending;559
4.8.2.3.11;15.2.3.11Visualization of Mixing of Polymer Pellets with Mineral Filler;560
4.8.2.3.12;15.2.3.12Characterization of Energy Dissipation in the Melting Zone: Pulse Perturbation Method and Dynamic Monitoring;560
4.8.2.3.13;15.2.3.13Characterization of the Twin Screw Extrusion Process from the Steady-State;567
4.8.3;15.3Compounding Principles and Practical Examples;572
4.8.3.1;15.3.1Melting Zone Extrusion and Mixing;572
4.8.3.1.1;15.3.1.1Melting of Polymer/Polymer Blends;573
4.8.3.1.2;15.3.1.2Melting of Polymer/Filler Blends;576
4.8.3.2;15.3.2Mixing after Melting;577
4.8.3.3;15.3.3Dispersive Mixing with Phase Inversion;579
4.8.3.3.1;15.3.3.1Mixing of Plastic/Rubber Blends with High Viscosity Ratio (> 3.5);579
4.8.3.3.2;15.3.3.2Mixing of Plastic/Rubber Blends with Low Viscosity Ratio (< 0.28);579
4.8.3.3.3;15.3.3.3 Mixing of Plastic/Rubber Blends with Extremely Low Viscosity Ratio (<< 0.1);580
4.8.3.3.4;15.3.3.4 Mixing of Plastic/Rubber Blends: Blending with in situ Grafting;581
4.8.3.4;15.3.4Melting and Mixing Dynamics in Extrusion;581
4.8.3.5;15.3.5Unstable Flow during Single Screw Extrusion;584
4.8.3.6;15.3.6Unstable Flow during Twin Screw Extrusion;587
4.8.3.7;15.3.7Visualization and Monitoring Applied to Process Control;590
4.8.4;15.4Summary;594
4.8.5;15.5Concluding Remarks;596
4.8.6;References;597
4.9;16Scale-Up of Mixing Equipment;602
4.9.1;16.1Similarity;602
4.9.2;16.2Systems;603
4.9.3;16.3Dimensionless Groups;604
4.9.3.1;16.3.1Global Treatment;604
4.9.3.2;16.3.2Zone-Based Treatment;607
4.9.3.2.1;16.3.2.1Melt Conveying Section;607
4.9.3.2.2;16.3.2.2Melting Sections;610
4.9.3.2.2.1;16.3.2.2.1Compact Solid Bed;610
4.9.3.2.2.2;16.3.2.2.2Dispersive Melting;612
4.9.3.2.3;16.3.2.3Solid Conveying Sections;613
4.9.3.2.4;16.3.2.4Mixing in Melt Conveying Sections;616
4.9.3.2.4.1;16.3.2.4.1Miscible Melts;616
4.9.3.2.4.2;16.3.2.4.2Immiscible Melts;616
4.9.3.2.4.3;16.3.2.4.3Solid/Melt Systems;617
4.9.4;16.4Scale-Up, Scale-Down Rules;621
4.9.4.1;16.4.1Continuous, Steady-State Processes;621
4.9.4.1.1;16.4.1.1Melt Extruder and Melt-Dominated Smooth-Barrel Plasticizing Extruder;624
4.9.4.1.1.1;16.4.1.1.1Identical Melt Output Temperatures and Identical Temperature Profiles over the Dimensionless Extruder Length;624
4.9.4.1.1.2;16.4.1.1.2Different Temperatures for the Model and Main Machine;632
4.9.4.1.2;16.4.1.2Rubber Extruder;635
4.9.4.1.3;16.4.1.3Grooved Barrel Extruder;637
4.9.4.1.4;16.4.1.4Co-Rotating Twin Screw Extruder;637
4.9.4.1.5;16.4.1.5Counter Rotating Twin Screw Extruder;647
4.9.4.1.6;16.4.1.6Non-Intermeshing Counter Rotating Twin Screw Kneader;648
4.9.4.1.7;16.4.1.7Buss Kneader;651
4.9.4.1.8;16.4.1.8Mixing Rolls;654
4.9.4.1.9;16.4.1.9Mixing Elements;654
4.9.4.2;16.4.2Discontinuous Processes;656
4.9.4.2.1;16.4.2.1Internal Mixers;656
4.9.4.2.2;16.4.2.2Mechanically Agitated Vessels;661
4.9.5;References;665
4.10;17Scale-Down of Mixing Equipment: Microfluidics;670
4.10.1;17.1Introduction;670
4.10.2;17.2Mixing at Small Scales: Dimensionless Groups;671
4.10.3;17.3Distributive Mixing at Small Scales;674
4.10.3.1;17.3.1Passive versus Active Actuation;675
4.10.3.2;17.3.2Passive Mixers: Design Options;676
4.10.3.3;17.3.3Staggered Herringbone Mixer;676
4.10.3.4;17.3.4Barrier-Embedded Static Mixers;684
4.10.3.5;17.3.5Serpentine Channels;689
4.10.4;17.4Active Mixers: Design Options;690
4.10.4.1;17.4.1Neutral Beads;690
4.10.4.2;17.4.2Magnetic Beads;695
4.10.4.3;17.4.3Coupled Electrostatics and Hydrodynamics;698
4.10.4.4;17.4.4Artificial Cilia;703
4.10.5;17.5Dispersive Mixing at Small Scales;709
4.10.5.1;17.5.1Experimental Observations;710
4.10.5.2;17.5.2Boundary Integral Simulations;713
4.10.5.3;17.5.3Small Deformation Theory;719
4.10.6;17.6Conclusions;720
4.10.7;References;722
5;Part III: Compounding;726
5.1;18Compounding (Theory and Practice);728
5.1.1;18.1Introduction;728
5.1.2;18.2Types and Characteristics of Compounds;728
5.1.2.1;18.2.1Polymer Blends;729
5.1.2.2;18.2.2Polymer Formulations;730
5.1.2.3;18.2.3Filled Polymers (Polymer Composites);731
5.1.3;18.3Compounding Practice;734
5.1.3.1;18.3.1General;734
5.1.3.2;18.3.2Polymer Blends and Polymer Formulations;735
5.1.3.3;18.3.3Filled Polymers;737
5.1.3.3.1;18.3.3.1Setting Up a Compounding Line;737
5.1.3.3.2;18.3.3.2Low Aspect Ratio Fillers;740
5.1.3.3.3;18.3.3.3High Aspect Ratio Fillers;742
5.1.3.3.4;18.3.3.4Nanoclays;743
5.1.4;18.4Concluding Remarks;744
5.1.5;Abbreviations;745
5.1.6;References;746
5.2;19Solid Additives;748
5.2.1;19.1Introduction;748
5.2.2;19.2Synthesis and Chemical Properties of Amorphous Silica;750
5.2.2.1;19.2.1Synthesis of Amorphous Silica;750
5.2.2.2;19.2.2Chemistry and Properties of Silica Surfaces;752
5.2.2.3;19.2.3Silica Mixing and Compounding;757
5.2.3;19.3Morphology of Filler Agglomerates;759
5.2.3.1;19.3.1Particle and Pore Size Distribution;759
5.2.3.2;19.3.2Dispersibility of Fine Particle Agglomerates;761
5.2.3.3;19.3.3The Fractal Nature of Filler Particulates;763
5.2.4;19.4Filler Reinforcement;766
5.2.5;19.5Concluding Remarks;774
5.2.6;References;774
5.3;20Compatibilizers – Mechanisms and Theory;782
5.3.1;20.1Introduction;782
5.3.2;20.2Parameters Affecting Wetting, Dispersion, and Adhesion;782
5.3.3;20.3Fillers – Surface Modification and Interfacial Agents;783
5.3.4;20.4Compatibilizers for Polymer Blends;787
5.3.5;Abbreviations;790
5.3.6;References;791
5.4;21Dispersion of Two-Dimensional Nanoparticles in Polymer Melts;794
5.4.1;Alejandra Reyna-Valencia and Mosto Bousmina;794
5.4.2;21.1Introduction;794
5.4.3;21.2Clay Particle Characteristics;796
5.4.3.1;21.2.1Structure;796
5.4.3.1.1;21.2.1.1Characterisation by X-Ray Diffraction;798
5.4.3.2;21.2.2Surface Interactions;799
5.4.3.3;21.2.3Intercalation by Organic Surfactants;804
5.4.4;21.3Exfoliation Process;807
5.4.5;21.4Stability of the Exfoliated Structure;812
5.4.6;21.5Role of Exfoliation On Macroscopic Behavior;814
5.4.7;21.6Special Case: Clay Dispersion in Multiphase Systems;815
5.4.8;21.7Modeling of Rheological Behavior;817
5.4.9;21.8Concluding Remarks;821
5.4.10;Acknowledgements;822
5.4.11;References;822
5.5;22Effect of Mixing on Properties of Compounds;826
5.5.1;22.1Types of Aggregation and Interaction between Particles;826
5.5.2;22.3Determination of Dispersion and Dispersion Index;829
5.5.3;22.4Mixing and Dispersion in Practice;832
5.5.3.1;22.4.1Agglomerate Dispersion;833
5.5.3.1.1;22.4.1.1Profile of Dispersed Phase;833
5.5.3.1.2;22.4.1.2Effect of Mixing Conditions;834
5.5.3.1.3;22.4.1.3Effect of Surface Treatment;836
5.5.3.2;22.4.2Fiber Mixing;837
5.5.3.3;22.4.3Mixing of Clay Nanocomposite;838
5.5.4;22.5Dispersion and Properties;839
5.5.4.1;22.5.1Mechanical Properties;839
5.5.4.1.1;22.5.1.1Effect of Agglomerate Dispersion;839
5.5.4.1.2;22.5.1.2Effect of Interface;842
5.5.4.2;22.5.2Electrical Properties;843
5.5.4.3;22.5.3Properties of Clay Nanocomposites;846
5.5.4.4;22.5.4Properties of Other Nanocomposites;849
5.5.5;22.6Summary;849
5.5.6;Nomenclature;850
5.5.7;References;851
6;Part IV: Mixing Practices;854
6.1;23Internal Mixers;856
6.1.1;23.1Introduction;856
6.1.2;23.2Mixing Mechanism of Internal Mixer;857
6.1.2.1;23.2.1Structure of Internal Mixer;857
6.1.2.2;23.2.2Mixing Steps for Mixing of Polymers and Fillers;859
6.1.2.3;23.2.3Dispersion Mechanism of Fillers;859
6.1.3;23.3Studies of Mixing Mechanism by Model Tests;860
6.1.3.1;23.3.1Two-Dimensional and Three-Dimensional Model Tests;860
6.1.3.2;23.3.2Improvement of Rotors by Model Tests;864
6.1.4;23.4Development of New Rotor for Internal Mixers;866
6.1.4.1;23.4.1Rotor in Tangential Type Internal Mixer;866
6.1.4.1.1;23.4.1.1Four-Wing Rotor (4WN);866
6.1.4.1.2;23.4.1.2ST Rotor;867
6.1.4.1.3;23.4.1.3Tangential Type 6-Wing Rotor (6WI);868
6.1.4.2;23.4.2Development of Rotors for Intermeshing Mixers;872
6.1.4.2.1;23.4.2.1Intermeshing Mixers;872
6.1.4.2.2;23.4.2.2VIC Mixer;873
6.1.4.2.3;23.4.2.3Partial Intermeshing Mixer;874
6.1.5;23.5Improvement of Internal Mixers;874
6.1.6;23.6Summary;875
6.1.7;References;876
6.2;24Mixing in Single-Screw Extruders;878
6.2.1;24.1Introduction;878
6.2.2;24.2Laminar Mixing in Melt Conveying;879
6.2.2.1;24.2.1Effect of Reorientation;894
6.2.2.2;24.2.2Backmixing;897
6.2.2.2.1;24.2.2.1Cross Sectional Mixing and Axial Mixing;898
6.2.2.2.2;24.2.2.2Residence Time Distribution;899
6.2.2.2.3;24.2.2.3RTD in Screw Extruders;901
6.2.2.2.4;24.2.2.4Methods to Improve Backmixing;902
6.2.2.2.5;24.2.2.5Conclusions;904
6.2.2.3;24.2.3Chaotic Mixing;904
6.2.3;24.3Mixing Devices in Extrusion;908
6.2.3.1;24.3.1Distributive Mixing Elements;912
6.2.3.1.1;24.3.1.1The Vortex Intermeshing Pin (VIP) Mixer;921
6.2.3.1.2;24.3.1.2Description of the VIP Mixer;923
6.2.3.1.3;24.3.1.3Experimental Results;925
6.2.3.2;24.3.2Dispersive Mixing Sections;932
6.2.3.2.1;24.3.2.1Design of Dispersive Mixing Devices;933
6.2.3.3;24.3.3Using the TSE Mixing Mechanism in Single Screw Extruders;957
6.2.4;Nomenclature;965
6.2.5;References;966
6.3;25Mixing Practices in Co-Rotating Twin Screw Extruders;972
6.3.1;25.1Introduction;972
6.3.2;25.2Building Blocks for Mixing;973
6.3.2.1;25.2.1Extruder Geometry;973
6.3.2.2;25.2.2Element Geometry;976
6.3.3;25.3Typical Process Mixing Tasks;988
6.3.3.1;25.3.1Polymer/Polymer;988
6.3.3.2;25.3.2Polymer/Low Aspect Ratio Filler;991
6.3.3.3;25.3.3Elastomer – Elastomer/Low Aspect Ratio Filler;994
6.3.3.4;25.3.4Polymer/High Aspect Ratio Filler (Fiber);995
6.3.3.5;25.3.5Polymer/Nano Scale Filler;997
6.3.3.6;25.3.6Polymer/Low Viscosity Additives;999
6.3.4;25.4Summary;1002
6.3.5;References;1003
6.4;26Intermeshing Twin Screw Extruders;1006
6.4.1;26.1Outline;1006
6.4.2;26.2Total Compounding System;1008
6.4.2.1;26.2.1Outline of the Total System;1008
6.4.2.2;26.2.2Typical Machine Specifications and Output Capacities;1009
6.4.2.3;26.2.3Extrusion Performance Simulation;1011
6.4.2.3.1;26.2.3.1Melting Mechanism Analysis;1012
6.4.2.3.2;26.2.3.2Twin Screw Extrusion Characteristics Simulation;1013
6.4.3;26.3Compounding Applications;1016
6.4.3.1;26.3.1Inorganic Filler Compounding;1016
6.4.3.2;26.3.2Glass-Fiber Compounding;1020
6.4.3.2.1;26.3.2.1Short Glass Fiber Compounding;1020
6.4.3.2.2;26.3.2.2Long Glass Fiber Compounding and Molding;1020
6.4.3.3;26.3.3Polymer Nano-Composite Compounding;1022
6.4.3.4;26.3.4Polymer Blending;1024
6.4.3.4.1;26.3.4.1Miscible Polymer Blending;1024
6.4.3.4.2;26.3.4.2Immiscible Polymer Blending;1027
6.4.4;26.4Reactive Extrusion;1031
6.4.4.1;26.4.1Advantages of Reactive Extrusion;1031
6.4.4.2;26.4.2Typical Chemical Reactions;1033
6.4.4.3;26.4.3Recycling Applications;1036
6.4.4.3.1;26.4.3.1PET Direct Extrusion;1036
6.4.4.3.2;26.4.3.2PET Modification for Producing Foamed Sheet;1036
6.4.4.3.3;26.4.3.3Combination of Reactive Processing and Injection Molding;1038
6.4.5;26.5Devolatilization;1040
6.4.5.1;26.5.1Effects of Water Addition;1040
6.4.5.2;26.5.2High Concentration Devolatilization;1041
6.4.6;References;1042
6.5;27Reactive Compounding;1044
6.5.1;27.1Introduction;1044
6.5.2;27.2Free Radical Grafting of Monomers onto Polymers;1045
6.5.2.1;27.2.1Overall Reaction Scheme;1047
6.5.2.2;27.2.2Free Radical Grafting in a Batch Mixer;1049
6.5.2.2.1;27.2.2.1Effect of Comonomers;1049
6.5.2.2.2;27.2.2.2Effect of Temperature;1051
6.5.2.2.3;27.2.2.3Effect of Mixing;1052
6.5.2.3;27.2.3Free Radical Grafting in a Twin Screw Extruder;1053
6.5.2.3.1;27.2.3.1Effect of Screw Design;1053
6.5.2.3.2;27.2.3.2Effect of Plastication/Melting;1054
6.5.2.3.3;27.2.3.3Effect of Feeding Mode;1057
6.5.2.4;27.2.4Recent Developments;1061
6.5.2.4.1;27.2.4.1Fractional Feeding;1061
6.5.2.4.2;27.2.4.2Concept of Nano-Reactors;1062
6.5.3;27.3Reactive Blending;1065
6.5.3.1;27.3.1General Features of Morphology Development;1065
6.5.3.2;27.3.2Reactive Blending in Batch Mixers or Analogues;1072
6.5.3.2.1;27.3.2.1Effect of the Copolymer Formation Kinetics;1072
6.5.3.2.2;27.3.2.2Effect of Mixing Time;1076
6.5.3.2.3;27.3.2.3Effect of Mixing Intensity;1077
6.5.3.3;27.3.3Reactive Blending in Screw Extruders;1078
6.5.3.3.1;27.3.3.1Non-Reactive versus Reactive Blends;1080
6.5.3.3.2;27.3.3.2Effect of Screw Configuration;1081
6.5.3.3.3;27.3.3.3Effect of the Compatibilizer Content;1082
6.5.3.3.4;27.3.3.4Adverse Effect of Mixing;1083
6.5.3.4;27.3.4One-Step versus Two-Step Reactive Blending;1086
6.5.3.5;27.3.5Comparison of in situ Compatibilization to Separate Copolymer Addition;1090
6.5.3.6;27.3.6Polymerized Blends;1092
6.5.3.6.1;27.3.6.1Intractable Engineering Plastics/Monomer Systems;1092
6.5.3.6.2;27.3.6.2Nano-Blends;1092
6.5.4;27.4Compounding of Polymer Nanocomposites;1093
6.5.4.1;27.4.1Multi-Scale Structures of Montmorillonite (MMT);1094
6.5.4.2;27.4.2Mechanisms of Dispersion of MMT in Polymers;1095
6.5.4.3;27.4.3Factors Affecting the Rate and Scale of Dispersion of MMT in Polymers;1095
6.5.4.4;27.4.4Water-Assisted MMT Dispersion in Polymers;1100
6.5.5;27.5Summary;1103
6.5.6;References;1104
6.6;28Continuous Mixers;1106
6.6.1;28.1Introduction;1106
6.6.2;28.2Structure and Principles of Operation;1107
6.6.2.1;28.2.1Solids Conveying;1109
6.6.2.2;28.2.2Melting;1110
6.6.2.3;28.2.3Mixing;1111
6.6.2.4;28.2.4Devolatilization;1113
6.6.2.5;28.2.5Pumping;1114
6.6.3;28.3Modeling;1116
6.6.3.1;28.3.1Circumferential Flow;1118
6.6.3.2;28.3.2Global Flow Models;1136
6.6.3.3;28.3.3Scale-Up Considerations;1146
6.6.4;28.4Rotor Design;1149
6.6.4.1;28.4.1Single-Stage Rotors;1149
6.6.4.2;28.4.2Two-Stage Rotors;1154
6.6.5;28.5Conclusion;1157
6.6.6;List of Symbols;1158
6.6.7;Abreviations;1159
6.6.8;References;1160
7;Subject Index;1164