Manas-Zloczower | Mixing and Compounding of Polymers | E-Book | sack.de
E-Book

E-Book, Englisch, 1182 Seiten

Manas-Zloczower Mixing and Compounding of Polymers

Theory and Practice
1. Auflage 2012
ISBN: 978-3-446-43371-7
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Theory and Practice

E-Book, Englisch, 1182 Seiten

ISBN: 978-3-446-43371-7
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Finally available again in its second edition, this classic covers everything from the basic principles to the various practical applications of state-of-the-art mixing and compounding.
Part I: Mechanisms and Theory
Basic Concepts - Mixing of Miscible Fluids - Mixing of Immiscible Fluids - Dispersive Mixing of Solid Additives - Distributive Mixing - Distribution Functions and Measures of Mixing
Part II: Mixing Equipment- Modeling, Simulation, Visualization
Batch Equipment Simulation - Batch Equipment Visualization - Continuous Equipment Simulation - Dispersive Mixing Devices in Single Screw - Twin Rotor Mixers - Co-Kneader - Visualization - Scale-up of Mixing Equipment - Scale-down of Mixing Equipment
Part III Material Consideration, Properties and Characterization
Solid additives (inorganic)- Solid additives (organic)- Compatibilizers (mechanisms, theory) - Material Consideration for Mixing at Nanoscale - Effect of Mixing on Properties of Compounds - Effect of Mixing on Rubber Properties
Part IV Mixing Practices
Internal Mixers - Single Screw Extruders - Twin Screw Extruders - Intermeshing Twin Screw Extruders - Reciprocating Screws - Reactive Compounding- Farrel Continuous Mixer
Manas-Zloczower Mixing and Compounding of Polymers jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Foreword;8
2;Contents;10
3;Part I: Mechanisms and Theory;26
3.1;1Basic Concepts;28
3.2;2Mixing of Miscible Liquids;30
3.2.1;2.1Introduction;30
3.2.2;2.2Continuum Analysis of Stretching;33
3.2.2.1;2.2.1Deformation Analysis;33
3.2.2.2;2.2.2Rate Analysis;38
3.2.2.3;2.2.3Interface Stretching in Simple Flows;41
3.2.2.3.1;2.2.3.1Simple Shear: Deformation Analysis;41
3.2.2.3.2;2.2.3.2Simple Shear: Rate Analysis;42
3.2.2.3.3;2.2.3.3Planar Elongation: Deformation Analysis;43
3.2.2.3.4;2.2.3.4Planar Elongation: Rate Analysis;44
3.2.2.4;2.2.4Stretching Behavior and Mixing Flows;45
3.2.3;2.3Chaos and Chaotic Flows;46
3.2.3.1;2.3.1An Example Flow;46
3.2.3.2;2.3.2Poincaré Sections;47
3.2.3.3;2.3.3Lyapunov Exponents;50
3.2.3.4;2.3.4Periodic Points;53
3.2.4;2.4Mixing in Chaotic Flows;54
3.2.4.1;2.4.1Global Chaos;54
3.2.4.2;2.4.2Universal Stretching Properties;55
3.2.4.2.1;2.4.2.1Growth of Average Stretch;56
3.2.4.2.2;2.4.2.2Global Stretching Distribution;57
3.2.4.2.3;2.4.2.3Spatial Distribution of Stretch;59
3.2.4.2.4;2.4.2.4Implications for Flow Selection;59
3.2.5;2.5Other Considerations;61
3.2.5.1;2.5.1Rheological Effects;61
3.2.5.2;2.5.2Molecular Diffusion;61
3.2.6;2.6Summary;62
3.2.7;Acknowledgements;63
3.2.8;References;63
3.3;3Mixing of Immiscible Liquids;66
3.3.1;3.1Introduction;67
3.3.2;3.2Mixing Mechanisms;68
3.3.3;3.3Distributive Mixing (Ca >> Cacrit);71
3.3.3.1;3.3.1Affine Deformation;71
3.3.3.2;3.3.2Efficient Mixing: Stretching, Folding, and Reorienting;73
3.3.3.3;3.3.3Static Mixers;75
3.3.3.3.1;3.3.3.1Multiflux;76
3.3.3.3.2;3.3.3.2Ross;78
3.3.3.3.3;3.3.3.3Sulzer;79
3.3.3.3.4;3.3.3.4Kenics;81
3.3.3.4;3.3.4Optimization Kenics Mixers;82
3.3.3.4.1;3.3.4.1Optimizing RL Designs;82
3.3.3.4.2;3.3.4.2Optimizing for Non-Newtonian Fluids;83
3.3.3.4.3;3.3.4.3Optimizing RR Designs;85
3.3.3.4.4;3.3.4.4Scale-up: Use of Structure Radius and Scale of Segregation;86
3.3.3.4.5;3.3.4.5Mapping the Structure;88
3.3.3.4.6;3.3.4.6Conclusions;91
3.3.3.5;3.3.5Dynamic Mixers;91
3.3.3.5.1;3.3.5.1Co-Rotating Twin-Screw Extruders;91
3.3.3.5.2;3.3.5.2Single Screw Extruders;94
3.3.3.5.3;3.3.5.3The Rotational Arc Mixer (RAM);96
3.3.3.6;3.3.6Understanding Mixing: the Lid-Driven Cavity Flow;96
3.3.3.6.1;3.3.6.1Geometry;96
3.3.3.6.2;3.3.6.2Periodic Points;97
3.3.3.6.3;3.3.6.3The Mapping Method;101
3.3.3.6.4;3.3.6.4Accuracy of the Mapping Method;102
3.3.3.6.5;3.3.6.5Optimization by Using the Mapping Method;103
3.3.3.6.6;3.3.6.6Adding Inertia;109
3.3.3.6.7;3.3.6.73-D Cavity;111
3.3.4;3.4Dispersive Mixing Ca ˜ Cacrit;115
3.3.4.1;3.4.1Rayleigh Disturbances;115
3.3.4.2;3.4.2Disintegration of Threads at Rest;117
3.3.4.3;3.4.3Disintegration of Threads During Flow;121
3.3.4.4;3.4.4Flow Classification;123
3.3.4.5;3.4.5Drop Deformation and Breakup;127
3.3.4.6;3.4.6Step-Wise Equilibrium versus Dynamic Breakup;133
3.3.4.6.1;3.4.6.1Two Mechanisms;133
3.3.4.6.2;3.4.6.2Plane Hyperbolic Flow;134
3.3.4.6.3;3.4.6.3Simple Shear Flow;135
3.3.4.7;3.4.7Theoretical Models for Drop Evolution;139
3.3.5;3.5Coalescence and Influence of Surfactants;149
3.3.5.1;3.5.1Collision of Drops;149
3.3.5.2;3.5.2Film Drainage;150
3.3.5.2.1;3.5.2.1Theoretical;150
3.3.5.2.2;3.5.2.2Restrictions of the Drainage Models;154
3.3.5.2.3;3.5.2.2Drainage Probability;155
3.3.5.2.4;3.5.2.3Experimental;157
3.3.5.3;3.5.3Coalescence Probability;158
3.3.5.4;3.5.4Combination of Breakup and Coalescence;160
3.3.5.5;3.5.5Influence of Surfactants on Deformation;163
3.3.5.5.1;3.5.5.1Surface Tension Gradients;164
3.3.5.5.2;3.5.5.2Equation of State;165
3.3.5.5.3;3.5.5.3Drop Shapes;165
3.3.5.5.4;3.5.5.4Modes of Drop Breakage;165
3.3.5.6;3.5.6Influence of Surfactants on Coalescence;172
3.3.6;3.6Polymer Blending in Practice;172
3.3.6.1;3.6.1A Two-Zone Model;172
3.3.6.1.1;3.6.1.1Principle;172
3.3.6.1.2;3.6.1.2Numerical Approach;173
3.3.6.1.3;3.6.1.3Effective Viscosity;174
3.3.6.1.4;3.6.1.4Results;175
3.3.6.1.5;3.6.1.5Influence of Material Parameters;177
3.3.6.1.6;3.6.1.6Influence of Processing Conditions;178
3.3.6.2;3.6.2Passage through a Die;180
3.3.6.3;3.6.3Phase Inversion;181
3.3.6.4;3.6.4Journal Bearing: a Second Model Flow;183
3.3.6.5;3.6.5Dynamics of Mixing;184
3.3.7;3.7Rheology and Morphology;185
3.3.7.1;3.7.1Constitutive Modeling of Dispersive Mixtures;185
3.3.7.2;3.7.2Diffuse Interface Modeling;190
3.3.8;3.8Conclusions;195
3.3.9;APPENDIX 3.A: Determination of Interfacial Tension;197
3.3.10;Nomenclature;199
3.3.11;References;202
3.4;4Dispersive Mixing of Solid Additives;208
3.4.1;4.1Introduction;208
3.4.2;4.2Continuum Dispersion Models;210
3.4.2.1;4.2.1Agglomerate Structure and Cohesiveness;210
3.4.2.2;4.2.2Models for Agglomerate Dispersion;212
3.4.3;4.3Discrete Dispersion Models;224
3.4.4;4.4Dispersion Mechanisms and Modelling Based on Experimental Observations;228
3.4.5;4.5Concluding Remarks;235
3.4.6;Nomenclature;236
3.4.7;References;239
3.5;5A Kinematic Approach to Distributive Mixing;242
3.5.1;5.1Introduction;242
3.5.2;5.2Kinematic Approach to Distributive Mixing;243
3.5.3;5.3Application to Simple Flow Configurations;245
3.5.3.1;5.3.1Simple Shear Flow;245
3.5.3.2;5.3.2Pure Elongational Flow;246
3.5.4;5.4Application to a Two-Dimensional Flow Configuration;248
3.5.5;5.5Experimental Study of a Two-Dimensional, Nonstationary Flow;252
3.5.6;5.6Application to Three-Dimensional Flow Configurations;255
3.5.6.1;5.6.1Periodic Shearing Flow;255
3.5.6.2;5.6.2Non-Stationary Flow within an Internal Mixer;258
3.5.7;5.7Discussion;260
3.5.8;Nomenclature;263
3.5.9;References;264
3.6;6Number of Passage Distribution Functions;266
3.6.1;6.1Introduction;266
3.6.2;6.2Theory of Number of Passage Distribution (NPD) Functions;267
3.6.3;6.3NPD Functions in Batch and Flow Recirculating Systems;268
3.6.4;6.4NPD Functions in Some Model Systems;270
3.6.4.1;6.4.1Well-Stirred Batch Vessel with Recirculation;270
3.6.4.2;6.4.2Plug Flow with Recirculation;271
3.6.4.3;6.4.3Well-Stirred Continuous Mixing Vessel with Recirculation;272
3.6.5;6.5Applications of NPD Functions to Dispersive Mixing;273
3.6.5.1;6.5.1Dispersive Mixing;273
3.6.5.2;6.5.2Modeling of Mixers;274
3.6.6;Acknowledgment;274
3.6.7;References;275
3.7;7Mixing Measures;276
3.7.1;7.1Introduction;276
3.7.2;7.2Entropic Measures;278
3.7.2.1;7.2.1Shannon Entropy;278
3.7.2.2;7.2.2Renyi Entropies;278
3.7.2.2.1;7.2.2.1Applications;279
3.7.2.3;7.2.3Multi-Component Shannon Entropy;281
3.7.2.3.1;7.2.3.1Application: Simultaneous Dispersive and Distributive Mixing Index;283
3.7.2.4;7.2.4Modified Multi-Component Shannon Entropy;284
3.7.2.4.1;7.2.4.1Applications to Extruders;285
3.7.2.4.2;7.2.4.2Applications to Micromixers;287
3.7.2.5;7.2.5Renyi Generalized Entropies and Fractal Properties;288
3.7.2.5.1;7.2.5.1Applications;288
3.7.3;7.3Summary;289
3.7.4;References;290
4;Part II: Mixing Equipment – Modeling, Simulation, Visualization;292
4.1;8Flow Field Analysis of a Banbury Mixer;294
4.1.1;8.1Introduction;294
4.1.2;8.2Flow Simulations;297
4.1.2.1;8.2.1Description of Method;297
4.1.2.2;8.2.2Velocity Profiles and Pressure Distributions;299
4.1.3;8.3Flow Field Characterization;303
4.1.3.1;8.3.1Dispersive Mixing;303
4.1.3.2;8.3.2Distributive Mixing;309
4.1.4;8.4Summary and Conclusions;320
4.1.5;Nomenclature;320
4.1.6;References;321
4.2;9CFD Simulations of Static Mixers: A Survey;324
4.2.1;9.1Static Mixers in the Polymer Industry;324
4.2.2;9.2Performance Criteria;326
4.2.2.1;9.2.1Pressure Drop;327
4.2.2.2;9.2.2Shearing Action;328
4.2.2.3;9.2.3Mixing Performance;329
4.2.2.4;9.2.4Mixing Homogeneity;331
4.2.2.5;9.2.5CFD Methods;332
4.2.3;9.3Numerical Modelling Principles;334
4.2.3.1;9.3.1Simulation Flowchart;334
4.2.3.2;9.3.2Equations of Change;335
4.2.3.3;9.3.3Discretization;336
4.2.3.4;9.3.4Solvers;338
4.2.3.5;9.3.5Particle Tracking;339
4.2.4;9.4Summary of the Main Hydrodynamic Predictions;341
4.2.4.1;9.4.1Pressure Drop;341
4.2.4.2;9.4.2Poincaré Maps;343
4.2.4.3;9.4.3Residence Time Distribution;343
4.2.4.4;9.4.4Overall Deformation and Shear;344
4.2.4.5;9.4.5Transverse Flow;345
4.2.5;9.5Summary of the Main Results on Mixing Evaluation;346
4.2.5.1;9.5.1Segregation Scale;346
4.2.5.2;9.5.2Intensity of Segregation;347
4.2.5.3;9.5.3Chaos Theory;348
4.2.6;9.6Mixer Performance Comparison;349
4.2.7;9.7Other Mixing Evaluation Studies;351
4.2.8;9.8Simulation Methods, Software Tools;351
4.2.9;9.9Industrial Perspective and what the Future Holds;354
4.2.9.1;9.9.1Single Phase Fluids;354
4.2.9.2;9.9.2Multiphase Fluids;354
4.2.9.3;9.9.3Multi-Scale Modeling;355
4.2.10;Nomenclature;356
4.2.11;References;358
4.3;10Flow Visualization in Internal Mixers;362
4.3.1;10.1Introduction;362
4.3.2;10.2Historical Development of Internal Mixers;364
4.3.3;10.3Flow Visualization;367
4.3.3.1;10.3.1Flow Visualization by Various Sensors;370
4.3.3.2;10.3.2Flow Visualization through Transparent Windows;376
4.3.4;References;384
4.4;11Continuous Equipment Simulation – Single Screw;388
4.4.1;11.1Introduction;388
4.4.2;11.2General Equations for the Creeping Flows of Generalized-Newtonian Fluids;389
4.4.3;11.3Geometrical Considerations and Approximations;392
4.4.4;11.4Overview of Previous Work;394
4.4.5;11.5Description of Applied Modeling Approaches;396
4.4.5.1;11.5.1Two-Dimensional Formulation;396
4.4.5.2;11.5.2Three-Dimensional Formulation;398
4.4.6;11.6Predicted Results;401
4.4.6.1;11.6.1Isothermal Flow of a Newtonian Fluid;401
4.4.6.2;11.6.2Isothermal Flow of a Power-Law Non-Newtonian Fluid;402
4.4.6.3;11.6.3Non-Isothermal Flow of Non-Newtonian Fluids;405
4.4.7;Nomenclature;410
4.4.8;References;412
4.5;12Modeling Flow in Twin Screw Extrusion;414
4.5.1;12.1Introduction;414
4.5.2;12.2Modular Self-Wiping Co-Rotating Twin Screw Extruders;416
4.5.2.1;12.2.1Technology;416
4.5.2.2;12.2.2Flow in Individual Elements;417
4.5.2.3;12.2.3Heat Balance;421
4.5.2.4;12.2.4Melting;422
4.5.2.5;12.2.5Composite Modular Machine Behavior;423
4.5.2.6;12.2.6Global Machine Software;424
4.5.3;12.3Tangential Counter-Rotating Twin Screw Extruders;425
4.5.3.1;12.3.1Technology;425
4.5.3.2;12.3.2Flow in Individual Elements;425
4.5.3.3;12.3.3Heat Balance;429
4.5.3.4;12.3.4Composite Modular Machine Behavior;430
4.5.4;12.4Intermeshing Counter-Rotating Twin Screw Extruders;431
4.5.4.1;12.4.1Technology;431
4.5.4.2;12.4.2Flow in Individual Elements;433
4.5.4.3;12.4.3Melting;434
4.5.4.4;12.4.4Composite Modular Machine Behavior;434
4.5.5;12.5Continuous Mixers;435
4.5.5.1;12.5.1Technology;435
4.5.5.2;12.5.2Flow Modeling;438
4.5.6;References;439
4.6;13Continuous Equipment Simulation – Co-Kneader;444
4.6.1;13.1Introduction;444
4.6.2;13.2Machine Geometry and Working Principle;446
4.6.2.1;13.2.1Screw Elements, Pins, and Barrel Liners;446
4.6.2.2;13.2.2Melting;449
4.6.3;13.3Modeling the Co-Kneader;451
4.6.4;13.4Newtonian, Isothermal Analysis of Continuous Mixers;452
4.6.4.1;13.4.1Twin-Screw Extruders;452
4.6.4.2;13.4.2The Co-Kneader;456
4.6.5;13.5Mixing;459
4.6.6;13.6Experimental;460
4.6.6.1;13.6.1Throughput versus Pressure Characteristic;462
4.6.6.2;13.6.2Filled Length;465
4.6.6.3;13.6.3Pressure Gradients;466
4.6.6.4;13.6.4Residence Time Distribution;468
4.6.7;13.7Nonisothermal, Non-Newtonian Analysis;470
4.6.8;13.8Outlook;470
4.6.9;Nomenclature;472
4.6.10;References;473
4.7;14Continuous Equipment Simulation – Mixing Devices;476
4.7.1;14.1Static Mixers;477
4.7.2;14.2Mixing Heads in Single Screw Extrusion;489
4.7.3;14.3Conclusions;495
4.7.4;References;495
4.8;15 Continuous Process Visualization: Visual Observation, On-Line Monitoring, Model-Fluid Extrusion and Simulation;498
4.8.1;15.1Introduction;498
4.8.1.1;15.1.1Overview;500
4.8.2;15.2Techniques for Visualization of Polymer Extrusion and Compounding;504
4.8.2.1;15.2.1Experimental Simulation with a Simple Mixer and Real Material;504
4.8.2.1.1;15.2.1.1Melting of Polymer Pellets;504
4.8.2.1.2;15.2.1.2Melting of Polymer Powders;509
4.8.2.1.3;15.2.1.3Melting of Polymer Blends;509
4.8.2.1.4;15.2.1.4Melting of Polymer/Rubber Blends;512
4.8.2.1.5;15.2.1.5Visualization of Morphological Transformations during Mixed Melting: the Phase Inversion Phenomenon;514
4.8.2.1.6;15.2.1.6 Visualization of Morphological Transformations during Mixed Melting: Direct Observation and Torque Monitoring of Miscible Blends with Extremely Low Viscosity Ratio (= 0.01);516
4.8.2.2;15.2.2Model Fluid Extrusion: Real Mixer with a Simple Fluid;517
4.8.2.2.1;15.2.2.1Visualization of Flow in Extruders using Model Fluids;518
4.8.2.2.2;15.2.2.2Visualization of Glass Fiber Dispersion in a Model Fluid;520
4.8.2.3;15.2.3Processing with Continuous Equipment and Real Polymers;521
4.8.2.3.1;15.2.3.1Visualization of the Extrudate at the Die Exit;521
4.8.2.3.2;15.2.3.2Visualization of Fluid Flows in a Fixed Geometry;522
4.8.2.3.3;15.2.3.3In-Line Sampling;525
4.8.2.3.4;15.2.3.4On-Line Microscopy;525
4.8.2.3.5;15.2.3.5Point Measurements: Characterization of Melting and Mixing Time with the Residence Time Distribution;529
4.8.2.3.6;15.2.3.6Visualization of Solid Transport and the Onset of Melting by Direct Observation;539
4.8.2.3.7;15.2.3.7Visualization of the Melting Zone by Direct Observation;541
4.8.2.3.8;15.2.3.8Visualization and On-line Monitoring using Highly-Instrumented Extruders;545
4.8.2.3.9;15.2.3.9Visualization of the Melting of Polymer Blends;556
4.8.2.3.10;15.2.3.10Visualization of Phase Inversion during Polymer Blending;559
4.8.2.3.11;15.2.3.11Visualization of Mixing of Polymer Pellets with Mineral Filler;560
4.8.2.3.12;15.2.3.12Characterization of Energy Dissipation in the Melting Zone: Pulse Perturbation Method and Dynamic Monitoring;560
4.8.2.3.13;15.2.3.13Characterization of the Twin Screw Extrusion Process from the Steady-State;567
4.8.3;15.3Compounding Principles and Practical Examples;572
4.8.3.1;15.3.1Melting Zone Extrusion and Mixing;572
4.8.3.1.1;15.3.1.1Melting of Polymer/Polymer Blends;573
4.8.3.1.2;15.3.1.2Melting of Polymer/Filler Blends;576
4.8.3.2;15.3.2Mixing after Melting;577
4.8.3.3;15.3.3Dispersive Mixing with Phase Inversion;579
4.8.3.3.1;15.3.3.1Mixing of Plastic/Rubber Blends with High Viscosity Ratio (> 3.5);579
4.8.3.3.2;15.3.3.2Mixing of Plastic/Rubber Blends with Low Viscosity Ratio (< 0.28);579
4.8.3.3.3;15.3.3.3 Mixing of Plastic/Rubber Blends with Extremely Low Viscosity Ratio (<< 0.1);580
4.8.3.3.4;15.3.3.4 Mixing of Plastic/Rubber Blends: Blending with in situ Grafting;581
4.8.3.4;15.3.4Melting and Mixing Dynamics in Extrusion;581
4.8.3.5;15.3.5Unstable Flow during Single Screw Extrusion;584
4.8.3.6;15.3.6Unstable Flow during Twin Screw Extrusion;587
4.8.3.7;15.3.7Visualization and Monitoring Applied to Process Control;590
4.8.4;15.4Summary;594
4.8.5;15.5Concluding Remarks;596
4.8.6;References;597
4.9;16Scale-Up of Mixing Equipment;602
4.9.1;16.1Similarity;602
4.9.2;16.2Systems;603
4.9.3;16.3Dimensionless Groups;604
4.9.3.1;16.3.1Global Treatment;604
4.9.3.2;16.3.2Zone-Based Treatment;607
4.9.3.2.1;16.3.2.1Melt Conveying Section;607
4.9.3.2.2;16.3.2.2Melting Sections;610
4.9.3.2.2.1;16.3.2.2.1Compact Solid Bed;610
4.9.3.2.2.2;16.3.2.2.2Dispersive Melting;612
4.9.3.2.3;16.3.2.3Solid Conveying Sections;613
4.9.3.2.4;16.3.2.4Mixing in Melt Conveying Sections;616
4.9.3.2.4.1;16.3.2.4.1Miscible Melts;616
4.9.3.2.4.2;16.3.2.4.2Immiscible Melts;616
4.9.3.2.4.3;16.3.2.4.3Solid/Melt Systems;617
4.9.4;16.4Scale-Up, Scale-Down Rules;621
4.9.4.1;16.4.1Continuous, Steady-State Processes;621
4.9.4.1.1;16.4.1.1Melt Extruder and Melt-Dominated Smooth-Barrel Plasticizing Extruder;624
4.9.4.1.1.1;16.4.1.1.1Identical Melt Output Temperatures and Identical Temperature Profiles over the Dimensionless Extruder Length;624
4.9.4.1.1.2;16.4.1.1.2Different Temperatures for the Model and Main Machine;632
4.9.4.1.2;16.4.1.2Rubber Extruder;635
4.9.4.1.3;16.4.1.3Grooved Barrel Extruder;637
4.9.4.1.4;16.4.1.4Co-Rotating Twin Screw Extruder;637
4.9.4.1.5;16.4.1.5Counter Rotating Twin Screw Extruder;647
4.9.4.1.6;16.4.1.6Non-Intermeshing Counter Rotating Twin Screw Kneader;648
4.9.4.1.7;16.4.1.7Buss Kneader;651
4.9.4.1.8;16.4.1.8Mixing Rolls;654
4.9.4.1.9;16.4.1.9Mixing Elements;654
4.9.4.2;16.4.2Discontinuous Processes;656
4.9.4.2.1;16.4.2.1Internal Mixers;656
4.9.4.2.2;16.4.2.2Mechanically Agitated Vessels;661
4.9.5;References;665
4.10;17Scale-Down of Mixing Equipment: Microfluidics;670
4.10.1;17.1Introduction;670
4.10.2;17.2Mixing at Small Scales: Dimensionless Groups;671
4.10.3;17.3Distributive Mixing at Small Scales;674
4.10.3.1;17.3.1Passive versus Active Actuation;675
4.10.3.2;17.3.2Passive Mixers: Design Options;676
4.10.3.3;17.3.3Staggered Herringbone Mixer;676
4.10.3.4;17.3.4Barrier-Embedded Static Mixers;684
4.10.3.5;17.3.5Serpentine Channels;689
4.10.4;17.4Active Mixers: Design Options;690
4.10.4.1;17.4.1Neutral Beads;690
4.10.4.2;17.4.2Magnetic Beads;695
4.10.4.3;17.4.3Coupled Electrostatics and Hydrodynamics;698
4.10.4.4;17.4.4Artificial Cilia;703
4.10.5;17.5Dispersive Mixing at Small Scales;709
4.10.5.1;17.5.1Experimental Observations;710
4.10.5.2;17.5.2Boundary Integral Simulations;713
4.10.5.3;17.5.3Small Deformation Theory;719
4.10.6;17.6Conclusions;720
4.10.7;References;722
5;Part III: Compounding;726
5.1;18Compounding (Theory and Practice);728
5.1.1;18.1Introduction;728
5.1.2;18.2Types and Characteristics of Compounds;728
5.1.2.1;18.2.1Polymer Blends;729
5.1.2.2;18.2.2Polymer Formulations;730
5.1.2.3;18.2.3Filled Polymers (Polymer Composites);731
5.1.3;18.3Compounding Practice;734
5.1.3.1;18.3.1General;734
5.1.3.2;18.3.2Polymer Blends and Polymer Formulations;735
5.1.3.3;18.3.3Filled Polymers;737
5.1.3.3.1;18.3.3.1Setting Up a Compounding Line;737
5.1.3.3.2;18.3.3.2Low Aspect Ratio Fillers;740
5.1.3.3.3;18.3.3.3High Aspect Ratio Fillers;742
5.1.3.3.4;18.3.3.4Nanoclays;743
5.1.4;18.4Concluding Remarks;744
5.1.5;Abbreviations;745
5.1.6;References;746
5.2;19Solid Additives;748
5.2.1;19.1Introduction;748
5.2.2;19.2Synthesis and Chemical Properties of Amorphous Silica;750
5.2.2.1;19.2.1Synthesis of Amorphous Silica;750
5.2.2.2;19.2.2Chemistry and Properties of Silica Surfaces;752
5.2.2.3;19.2.3Silica Mixing and Compounding;757
5.2.3;19.3Morphology of Filler Agglomerates;759
5.2.3.1;19.3.1Particle and Pore Size Distribution;759
5.2.3.2;19.3.2Dispersibility of Fine Particle Agglomerates;761
5.2.3.3;19.3.3The Fractal Nature of Filler Particulates;763
5.2.4;19.4Filler Reinforcement;766
5.2.5;19.5Concluding Remarks;774
5.2.6;References;774
5.3;20Compatibilizers – Mechanisms and Theory;782
5.3.1;20.1Introduction;782
5.3.2;20.2Parameters Affecting Wetting, Dispersion, and Adhesion;782
5.3.3;20.3Fillers – Surface Modification and Interfacial Agents;783
5.3.4;20.4Compatibilizers for Polymer Blends;787
5.3.5;Abbreviations;790
5.3.6;References;791
5.4;21Dispersion of Two-Dimensional Nanoparticles in Polymer Melts;794
5.4.1;Alejandra Reyna-Valencia and Mosto Bousmina;794
5.4.2;21.1Introduction;794
5.4.3;21.2Clay Particle Characteristics;796
5.4.3.1;21.2.1Structure;796
5.4.3.1.1;21.2.1.1Characterisation by X-Ray Diffraction;798
5.4.3.2;21.2.2Surface Interactions;799
5.4.3.3;21.2.3Intercalation by Organic Surfactants;804
5.4.4;21.3Exfoliation Process;807
5.4.5;21.4Stability of the Exfoliated Structure;812
5.4.6;21.5Role of Exfoliation On Macroscopic Behavior;814
5.4.7;21.6Special Case: Clay Dispersion in Multiphase Systems;815
5.4.8;21.7Modeling of Rheological Behavior;817
5.4.9;21.8Concluding Remarks;821
5.4.10;Acknowledgements;822
5.4.11;References;822
5.5;22Effect of Mixing on Properties of Compounds;826
5.5.1;22.1Types of Aggregation and Interaction between Particles;826
5.5.2;22.3Determination of Dispersion and Dispersion Index;829
5.5.3;22.4Mixing and Dispersion in Practice;832
5.5.3.1;22.4.1Agglomerate Dispersion;833
5.5.3.1.1;22.4.1.1Profile of Dispersed Phase;833
5.5.3.1.2;22.4.1.2Effect of Mixing Conditions;834
5.5.3.1.3;22.4.1.3Effect of Surface Treatment;836
5.5.3.2;22.4.2Fiber Mixing;837
5.5.3.3;22.4.3Mixing of Clay Nanocomposite;838
5.5.4;22.5Dispersion and Properties;839
5.5.4.1;22.5.1Mechanical Properties;839
5.5.4.1.1;22.5.1.1Effect of Agglomerate Dispersion;839
5.5.4.1.2;22.5.1.2Effect of Interface;842
5.5.4.2;22.5.2Electrical Properties;843
5.5.4.3;22.5.3Properties of Clay Nanocomposites;846
5.5.4.4;22.5.4Properties of Other Nanocomposites;849
5.5.5;22.6Summary;849
5.5.6;Nomenclature;850
5.5.7;References;851
6;Part IV: Mixing Practices;854
6.1;23Internal Mixers;856
6.1.1;23.1Introduction;856
6.1.2;23.2Mixing Mechanism of Internal Mixer;857
6.1.2.1;23.2.1Structure of Internal Mixer;857
6.1.2.2;23.2.2Mixing Steps for Mixing of Polymers and Fillers;859
6.1.2.3;23.2.3Dispersion Mechanism of Fillers;859
6.1.3;23.3Studies of Mixing Mechanism by Model Tests;860
6.1.3.1;23.3.1Two-Dimensional and Three-Dimensional Model Tests;860
6.1.3.2;23.3.2Improvement of Rotors by Model Tests;864
6.1.4;23.4Development of New Rotor for Internal Mixers;866
6.1.4.1;23.4.1Rotor in Tangential Type Internal Mixer;866
6.1.4.1.1;23.4.1.1Four-Wing Rotor (4WN);866
6.1.4.1.2;23.4.1.2ST Rotor;867
6.1.4.1.3;23.4.1.3Tangential Type 6-Wing Rotor (6WI);868
6.1.4.2;23.4.2Development of Rotors for Intermeshing Mixers;872
6.1.4.2.1;23.4.2.1Intermeshing Mixers;872
6.1.4.2.2;23.4.2.2VIC Mixer;873
6.1.4.2.3;23.4.2.3Partial Intermeshing Mixer;874
6.1.5;23.5Improvement of Internal Mixers;874
6.1.6;23.6Summary;875
6.1.7;References;876
6.2;24Mixing in Single-Screw Extruders;878
6.2.1;24.1Introduction;878
6.2.2;24.2Laminar Mixing in Melt Conveying;879
6.2.2.1;24.2.1Effect of Reorientation;894
6.2.2.2;24.2.2Backmixing;897
6.2.2.2.1;24.2.2.1Cross Sectional Mixing and Axial Mixing;898
6.2.2.2.2;24.2.2.2Residence Time Distribution;899
6.2.2.2.3;24.2.2.3RTD in Screw Extruders;901
6.2.2.2.4;24.2.2.4Methods to Improve Backmixing;902
6.2.2.2.5;24.2.2.5Conclusions;904
6.2.2.3;24.2.3Chaotic Mixing;904
6.2.3;24.3Mixing Devices in Extrusion;908
6.2.3.1;24.3.1Distributive Mixing Elements;912
6.2.3.1.1;24.3.1.1The Vortex Intermeshing Pin (VIP) Mixer;921
6.2.3.1.2;24.3.1.2Description of the VIP Mixer;923
6.2.3.1.3;24.3.1.3Experimental Results;925
6.2.3.2;24.3.2Dispersive Mixing Sections;932
6.2.3.2.1;24.3.2.1Design of Dispersive Mixing Devices;933
6.2.3.3;24.3.3Using the TSE Mixing Mechanism in Single Screw Extruders;957
6.2.4;Nomenclature;965
6.2.5;References;966
6.3;25Mixing Practices in Co-Rotating Twin Screw Extruders;972
6.3.1;25.1Introduction;972
6.3.2;25.2Building Blocks for Mixing;973
6.3.2.1;25.2.1Extruder Geometry;973
6.3.2.2;25.2.2Element Geometry;976
6.3.3;25.3Typical Process Mixing Tasks;988
6.3.3.1;25.3.1Polymer/Polymer;988
6.3.3.2;25.3.2Polymer/Low Aspect Ratio Filler;991
6.3.3.3;25.3.3Elastomer – Elastomer/Low Aspect Ratio Filler;994
6.3.3.4;25.3.4Polymer/High Aspect Ratio Filler (Fiber);995
6.3.3.5;25.3.5Polymer/Nano Scale Filler;997
6.3.3.6;25.3.6Polymer/Low Viscosity Additives;999
6.3.4;25.4Summary;1002
6.3.5;References;1003
6.4;26Intermeshing Twin Screw Extruders;1006
6.4.1;26.1Outline;1006
6.4.2;26.2Total Compounding System;1008
6.4.2.1;26.2.1Outline of the Total System;1008
6.4.2.2;26.2.2Typical Machine Specifications and Output Capacities;1009
6.4.2.3;26.2.3Extrusion Performance Simulation;1011
6.4.2.3.1;26.2.3.1Melting Mechanism Analysis;1012
6.4.2.3.2;26.2.3.2Twin Screw Extrusion Characteristics Simulation;1013
6.4.3;26.3Compounding Applications;1016
6.4.3.1;26.3.1Inorganic Filler Compounding;1016
6.4.3.2;26.3.2Glass-Fiber Compounding;1020
6.4.3.2.1;26.3.2.1Short Glass Fiber Compounding;1020
6.4.3.2.2;26.3.2.2Long Glass Fiber Compounding and Molding;1020
6.4.3.3;26.3.3Polymer Nano-Composite Compounding;1022
6.4.3.4;26.3.4Polymer Blending;1024
6.4.3.4.1;26.3.4.1Miscible Polymer Blending;1024
6.4.3.4.2;26.3.4.2Immiscible Polymer Blending;1027
6.4.4;26.4Reactive Extrusion;1031
6.4.4.1;26.4.1Advantages of Reactive Extrusion;1031
6.4.4.2;26.4.2Typical Chemical Reactions;1033
6.4.4.3;26.4.3Recycling Applications;1036
6.4.4.3.1;26.4.3.1PET Direct Extrusion;1036
6.4.4.3.2;26.4.3.2PET Modification for Producing Foamed Sheet;1036
6.4.4.3.3;26.4.3.3Combination of Reactive Processing and Injection Molding;1038
6.4.5;26.5Devolatilization;1040
6.4.5.1;26.5.1Effects of Water Addition;1040
6.4.5.2;26.5.2High Concentration Devolatilization;1041
6.4.6;References;1042
6.5;27Reactive Compounding;1044
6.5.1;27.1Introduction;1044
6.5.2;27.2Free Radical Grafting of Monomers onto Polymers;1045
6.5.2.1;27.2.1Overall Reaction Scheme;1047
6.5.2.2;27.2.2Free Radical Grafting in a Batch Mixer;1049
6.5.2.2.1;27.2.2.1Effect of Comonomers;1049
6.5.2.2.2;27.2.2.2Effect of Temperature;1051
6.5.2.2.3;27.2.2.3Effect of Mixing;1052
6.5.2.3;27.2.3Free Radical Grafting in a Twin Screw Extruder;1053
6.5.2.3.1;27.2.3.1Effect of Screw Design;1053
6.5.2.3.2;27.2.3.2Effect of Plastication/Melting;1054
6.5.2.3.3;27.2.3.3Effect of Feeding Mode;1057
6.5.2.4;27.2.4Recent Developments;1061
6.5.2.4.1;27.2.4.1Fractional Feeding;1061
6.5.2.4.2;27.2.4.2Concept of Nano-Reactors;1062
6.5.3;27.3Reactive Blending;1065
6.5.3.1;27.3.1General Features of Morphology Development;1065
6.5.3.2;27.3.2Reactive Blending in Batch Mixers or Analogues;1072
6.5.3.2.1;27.3.2.1Effect of the Copolymer Formation Kinetics;1072
6.5.3.2.2;27.3.2.2Effect of Mixing Time;1076
6.5.3.2.3;27.3.2.3Effect of Mixing Intensity;1077
6.5.3.3;27.3.3Reactive Blending in Screw Extruders;1078
6.5.3.3.1;27.3.3.1Non-Reactive versus Reactive Blends;1080
6.5.3.3.2;27.3.3.2Effect of Screw Configuration;1081
6.5.3.3.3;27.3.3.3Effect of the Compatibilizer Content;1082
6.5.3.3.4;27.3.3.4Adverse Effect of Mixing;1083
6.5.3.4;27.3.4One-Step versus Two-Step Reactive Blending;1086
6.5.3.5;27.3.5Comparison of in situ Compatibilization to Separate Copolymer Addition;1090
6.5.3.6;27.3.6Polymerized Blends;1092
6.5.3.6.1;27.3.6.1Intractable Engineering Plastics/Monomer Systems;1092
6.5.3.6.2;27.3.6.2Nano-Blends;1092
6.5.4;27.4Compounding of Polymer Nanocomposites;1093
6.5.4.1;27.4.1Multi-Scale Structures of Montmorillonite (MMT);1094
6.5.4.2;27.4.2Mechanisms of Dispersion of MMT in Polymers;1095
6.5.4.3;27.4.3Factors Affecting the Rate and Scale of Dispersion of MMT in Polymers;1095
6.5.4.4;27.4.4Water-Assisted MMT Dispersion in Polymers;1100
6.5.5;27.5Summary;1103
6.5.6;References;1104
6.6;28Continuous Mixers;1106
6.6.1;28.1Introduction;1106
6.6.2;28.2Structure and Principles of Operation;1107
6.6.2.1;28.2.1Solids Conveying;1109
6.6.2.2;28.2.2Melting;1110
6.6.2.3;28.2.3Mixing;1111
6.6.2.4;28.2.4Devolatilization;1113
6.6.2.5;28.2.5Pumping;1114
6.6.3;28.3Modeling;1116
6.6.3.1;28.3.1Circumferential Flow;1118
6.6.3.2;28.3.2Global Flow Models;1136
6.6.3.3;28.3.3Scale-Up Considerations;1146
6.6.4;28.4Rotor Design;1149
6.6.4.1;28.4.1Single-Stage Rotors;1149
6.6.4.2;28.4.2Two-Stage Rotors;1154
6.6.5;28.5Conclusion;1157
6.6.6;List of Symbols;1158
6.6.7;Abreviations;1159
6.6.8;References;1160
7;Subject Index;1164



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.