Buch, Englisch, Band 439, 438 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1727 g
An Axiomatic Approach to Differential Geometry Volume II: Geometry. Examples and Applications
Buch, Englisch, Band 439, 438 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1727 g
Reihe: Mathematics and Its Applications
ISBN: 978-0-7923-5006-4
Verlag: Springer Netherlands
This two-volume monograph obtains fundamental notions and results of the standard differential geometry of smooth (CINFINITY) manifolds, without using differential calculus. Here, the sheaf-theoretic character is emphasised. This has theoretical advantages such as greater perspective, clarity and unification, but also practical benefits ranging from elementary particle physics, via gauge theories and theoretical cosmology (`differential spaces'), to non-linear PDEs (generalised functions). Thus, more general applications, which are no longer `smooth' in the classical sense, can be coped with. The treatise might also be construed as a new systematic endeavour to confront the ever-increasing notion that the `world around us is far from being smooth enough'.
Audience: This work is intended for postgraduate students and researchers whose work involves differential geometry, global analysis, analysis on manifolds, algebraic topology, sheaf theory, cohomology, functional analysis or abstract harmonic analysis.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
Weitere Infos & Material
Two. Geometry.- VI. Geometry of Vector Sheaves. A-connections.- VII. A-connections. Local Theory.- VIII. Curvature.- IX. Characteristic Classes.- Three. Examples and Applications.- X. Classical Theory.- XI. Sheaves and Presheaves with Topological Algebraic Structures.- Notational Index.




