Buch, Englisch, 336 Seiten, Format (B × H): 196 mm x 249 mm, Gewicht: 771 g
Buch, Englisch, 336 Seiten, Format (B × H): 196 mm x 249 mm, Gewicht: 771 g
ISBN: 978-1-108-42812-5
Verlag: Cambridge University Press
This book will help readers understand fundamental and advanced statistical models and deep learning models for robust speaker recognition and domain adaptation. This useful toolkit enables readers to apply machine learning techniques to address practical issues, such as robustness under adverse acoustic environments and domain mismatch, when deploying speaker recognition systems. Presenting state-of-the-art machine learning techniques for speaker recognition and featuring a range of probabilistic models, learning algorithms, case studies, and new trends and directions for speaker recognition based on modern machine learning and deep learning, this is the perfect resource for graduates, researchers, practitioners and engineers in electrical engineering, computer science and applied mathematics.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik
- Mathematik | Informatik EDV | Informatik Informatik Natürliche Sprachen & Maschinelle Übersetzung
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Part I. Fundamental Theories: 1. Introduction; 2. Learning algorithms; 3. Machine learning models; Part II. Advanced Studies: 4. Deep learning models; 5. Robust speaker verification; 6. Domain adaptation; 7. Dimension reduction and data augmentation; 8. Future direction; Index.