Majumdar | Compressed Sensing for Magnetic Resonance Image Reconstruction | E-Book | sack.de
E-Book

E-Book, Englisch, 0 Seiten

Majumdar Compressed Sensing for Magnetic Resonance Image Reconstruction

E-Book, Englisch, 0 Seiten

ISBN: 978-1-316-67428-4
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Expecting the reader to have some basic training in liner algebra and optimization, the book begins with a general discussion on CS techniques and algorithms. It moves on to discussing single channel static MRI, the most common modality in clinical studies. It then takes up multi-channel MRI and the interesting challenges consequently thrown up in signal reconstruction. Off-line and on-line techniques in dynamic MRI reconstruction are visited. Towards the end the book broadens the subject by discussing how CS is being applied to other areas of biomedical signal processing like X-ray, CT and EEG acquisition. The emphasis throughout is on qualitative understanding of the subject rather than on quantitative aspects of mathematical forms. The book is intended for MRI engineers interested in the brass tacks of image formation; medical physicists interested in advanced techniques in image reconstruction; and mathematicians or signal processing engineers.
Majumdar Compressed Sensing for Magnetic Resonance Image Reconstruction jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


List of figures; List of tables; Foreword; Preface; Acknowledgements; Color plates; 1. Mathematical techniques; 2. Single channel static MR image reconstruction; 3. Multi-coil parallel MRI reconstruction; 4. Dynamic MRI reconstruction; 5. Applications in other areas; 6. Some open problems; Index; About the author.


Majumdar, Angshul
Angshul Majumdar completed his Master's and PhD at the University of British Columbia in 2009 and 2012 respectively. He is currently Assistant Professor at Indraprastha Institute of Information Technology, New Delhi. His primary research interests are optimization algorithms for sparse vector recovery and low-rank matrix completion. The application areas of his research spans across medical imaging, biomedical signal processing, radar signal processing and collaborative filtering recommender systems.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.