Advanced Statistical Programming
Buch, Englisch, 257 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 4102 g
ISBN: 978-1-4842-3587-4
Verlag: Apress
Gain an accelerated introduction to domain-specific languages in R, including coverage of regular expressions. This compact, in-depth book shows you how DSLs are programming languages specialized for a particular purpose, as opposed to general purpose programming languages. Along the way, you’ll learn to specify tasks you want to do in a precise way and achieve programming goals within a domain-specific context.
Domain-Specific Languages in R includes examples of DSLs including large data sets or matrix multiplication; pattern matching DSLs for application in computer vision; and DSLs for continuous time Markov chains and their applications in data science. After reading and using this book, you’ll understand how to write DSLs in R and have skills you can extrapolate to other programming languages.
What You'll Learn
- Program with domain-specific languages using R
- Discover the components of DSLs
- Carry out large matrix expressions and multiplications
- Implement metaprogramming with DSLs
- Parse and manipulate expressions
Who This Book Is For
Those with prior programming experience. R knowledge is helpful but not required.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
Weitere Infos & Material
1. Introduction.- 2. Matrix expressions.- 3. Components of a programming language.- 4. Functions, classes and operators.- 5. Parsing and manipulating expressions.- 6. Lambda expressions.- 7. Environments and Expressions.- 8. Tidy evaluation.- 9. List comprehension.- 10. Continuous-Time Markov chains.- 11. Pattern matching.- 12. Dynamic programming.- 13. Conclusion.