Maglogiannis / Iliadis / Papaleonidas | Artificial Intelligence Applications and Innovations | Buch | 978-3-031-63222-8 | sack.de

Buch, Englisch, 390 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 793 g

Reihe: IFIP Advances in Information and Communication Technology

Maglogiannis / Iliadis / Papaleonidas

Artificial Intelligence Applications and Innovations

20th IFIP WG 12.5 International Conference, AIAI 2024, Corfu, Greece, June 27-30, 2024, Proceedings, Part IV
2024
ISBN: 978-3-031-63222-8
Verlag: Springer Nature Switzerland

20th IFIP WG 12.5 International Conference, AIAI 2024, Corfu, Greece, June 27-30, 2024, Proceedings, Part IV

Buch, Englisch, 390 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 793 g

Reihe: IFIP Advances in Information and Communication Technology

ISBN: 978-3-031-63222-8
Verlag: Springer Nature Switzerland


This book constitutes the refereed proceedings of the 20th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2024, held in Corfu, Greece, during June 27–30, 2024.

The 100 full papers and 8 short papers included in this book were carefully reviewed and selected from 213 submissions. The diverse nature of papers presented demonstrates the vitality of AI algorithms and approaches. It certainly proves the very wide range of AI applications as well.

Maglogiannis / Iliadis / Papaleonidas Artificial Intelligence Applications and Innovations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Deep Sleep Recognition Based on CNNs and Data Augmentation.
.- Gamified Crowd Management Utilizing AR and Computer Vision on the Edge.
.- KeepOriginalAugment: Single Image-based Better Information-Preserving Data Augmentation Approach.
.- Using DCGANs and HOG+Patch-based CNN for Face Spoofing Mitigation.
.- Vertical Federated Image Segmentation.
.- A Machine Learning Approach for Points of Interest Extraction and Event Classification.
.- An Empirical Analysis of Data Reduction Techniques for k-NN Classification.
.- Controlling Popularity Bias in Sequential Recommendation Models.
.- Enhanced Item Recommendation via Graph Properties in Sparse Data.
.- Modeling the Air Conditioner Performance Tests using Artificial Neural Network Simulator (ANNS-AC).
.- Pattern Matching in Polyphonic Musical Sequences.
.- A Voting Approach for Explainable Classification with Rule Learning.
.- Dynamic Stacking Optimization in Unpredictable Environments : A Focus on Crane Scheduling.
.- FASTER-CE: Fast, Sparse, Transparent, and Robust Counterfactual Explanations.
.- Optimizations for Learning from Linear Feedback Shift Register Variations with Artificial Neural Networks.
.- Path planning optimisation for multiple drones: Repositioning the Starting Point.
.- The Faculty Assignment Problem in Higher Education: A Shapley Value-based Approach.
.- A Multi-Scale Parallel Unsupervised Model For Multivariate Time Series Anomaly Detection.
.- Active Learning with Unfiltered Informativeness Technique for Object Detection.
.- Assist of AI in a Smart Learning Environment.
.- Finding Logical Vulnerability in Policies Using Three-Level Semantic Framework.
.- From Tweets to Reddit: Leveraging Semi-Supervised Domain Adaptation for Improving Data Filtering.
.- Retail store customer behavior analysis system: Design and Implementation.
.- A MARL-based Approach for Easing MAS Organization Engineering.
.- EVO: An Ontology for the Field of Electric Vehicles.
.- Incremental Conflict-based Search for Multi-agent Path Finding in Dynamic Environment.
.- Integrating LLMs in the engineering of a SAR ontology.
.- LFENav: LLM-based frontiers exploration for visual semantic navigation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.