Maglogiannis / Iliadis / Papaleonidas | Artificial Intelligence Applications and Innovations | Buch | 978-3-031-63210-5 | sack.de

Buch, Englisch, 376 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 770 g

Reihe: IFIP Advances in Information and Communication Technology

Maglogiannis / Iliadis / Papaleonidas

Artificial Intelligence Applications and Innovations

20th IFIP WG 12.5 International Conference, AIAI 2024, Corfu, Greece, June 27-30, 2024, Proceedings, Part I
2024
ISBN: 978-3-031-63210-5
Verlag: Springer Nature Switzerland

20th IFIP WG 12.5 International Conference, AIAI 2024, Corfu, Greece, June 27-30, 2024, Proceedings, Part I

Buch, Englisch, 376 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 770 g

Reihe: IFIP Advances in Information and Communication Technology

ISBN: 978-3-031-63210-5
Verlag: Springer Nature Switzerland


This book constitutes the refereed proceedings of the 20th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2024, held in Corfu, Greece, during June 27–30, 2024.

The 100 full papers and 8 short papers included in this book were carefully reviewed and selected from 213 submissions. The diverse nature of papers presented demonstrates the vitality of AI algorithms and approaches. It certainly proves the very wide range of AI applications as well.

Maglogiannis / Iliadis / Papaleonidas Artificial Intelligence Applications and Innovations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- A Novel Signature for Distinguishing Non-Lesional from Lesional Skin of Atopic Dermatitis Based on a Machine Learning Approach.
.- Advanced Mortality Prediction in Adult ICU: Introducing a Deep Learning Approach in Healthcare.
.- Advancing scRNA-seq Data Integration via a Novel Gene Selection Method.
.- Data Augmentation Techniques for Cross-Domain WiFi CSI-based Human Activity Recognition.
.- Enhancing Monkeypox Detection: A Machine Learning Approach to Symptom Analysis and Disease Prediction.
.- Evaluation of Language Models for Multilabel Classification of Biomedical Texts.
.- Higher-Order Adaptive Dynamical System Modelling of the Role of Epigenetics in Major Depressive Disorder.
.- Human-In-The-Loop based Success Rate Prediction for Medical Crowdfunding.
.- Hybrid Explanatory Interactive Machine Learning for Medical Diagnosis.
.- Image-Based Human Action Recognition with Transfer Learning using Grad-CAM for Visualization.
.- IRFold: An RNA Secondary Structure Prediction Approach.
.- Machine Learning Models for Predicting Celiac Disease  Based on Non-invasive Clinical Symptoms.
.- Modeling Distributed and Flexible PHM System based on the Belief Function Theory.
.- MTA-Net: a Multi-task Assisted Network for Whole-body Lymphoma Segmentation.
.- Optimization of healthcare process management using machine learning.
.- Revisiting the problem of missing values in high-dimensional data and feature selection effect.
.- Semantic Modelling for Representation and Integration of Health Data from Wearable Devices.
.- The Role of Epigenetics in OCD: a Multi-Order Adaptive Network Model for DNA-Methylation Pathways and the Development of OCD.
.- Towards an Unbiased Classification of Chest X-ray Images using a RL Powered ACGAN Framework.
.- Vision transformer based tokenization for enhanced breast cancer histopathological images classification.
.- WristSense: A Wrist-wear Dataset for Identifying Aggressive Tendencies.
.- A Network-based Intrusion Detection System based on widely used Cybersecurity Datasets and State of the Art ML techniques.
.- Effective Machine Learning Techniques and API Realizations for Visualizing Fraud Detection in Customer Transactions.
.- Enhancing Malware Detection through Machine Learning using XAI with SHAP Framework.
.- Exploration of Ensemble Methods for Cyber Attack Detection in Cyber-Physical Systems.
.- Local Community-Based Anomaly Detection in Graph Streams.
.- Synthetic Data Generation and Impact Analysis of Machine Learning Models for Enhanced Credit Card Fraud Detection.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.