Maglogiannis / Iliadis / Andreou | Artificial Intelligence Applications and Innovations | E-Book | sack.de
E-Book

Maglogiannis / Iliadis / Andreou Artificial Intelligence Applications and Innovations

21st IFIP WG 12.5 International Conference, AIAI 2025, Limassol, Cyprus, June 26–29, 2025, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-3-031-96228-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

21st IFIP WG 12.5 International Conference, AIAI 2025, Limassol, Cyprus, June 26–29, 2025, Proceedings, Part II

E-Book, Englisch, 448 Seiten

Reihe: IFIP Advances in Information and Communication Technology

ISBN: 978-3-031-96228-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



Maglogiannis / Iliadis / Andreou Artificial Intelligence Applications and Innovations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- A Fine-grained Actor-Based Autoencoder Model.

.- Advanced IoT-AI Integration for Predictive Management of Positive Temperature Cold Storage Systems.

.- AI-Driven Artistry - Transforming Guitar Design with Generative Models.

.- An Integrated Convolutional & Transformer Architecture for Word-Based Handwriter Identification.

.- Assessing Deep Learning Challenges in Lightweight AES Cryptanalysis.

.- Border Gateway Protocol Hijacks and Anomalies Detection: A Graph-based Deep Learning Approach.

.- Collaborative Split Federated Learning with Parallel Training and Aggregation.

.- Comparison of Machine Learning and Deep Learning Models for Change of Direction Classification Using Engineered Features.

.- Declarative, generic definition and effective implementation of transfer learning algorithms.

.- Disaster Data Driven Forecasting for Preemptive Crisis Response.

.- Domain Adaptation for Automated Tag Prediction in Competitive Programming.

.- Enhancing Agricultural Disease Management: An Application of Deep Learning for Fusarium Head Blight Detection in Wheat Crops.

.- Facial Expression Recognition Using Dual Direction Attention and Diffusion Models with Self-Supervised Learning.

.- Imbalanced Graph Learning via Graph Attention Network and Variational Autoencoder.

.- Insurance Claim Prediction Using Unbiased Confidence Guarantees.

.- Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach.

.- Leveraging Incremental Domain Adaptation in Olive Disease Detection.

.- Machine Learning modeling of the impact of masonry infills’ in-plan irregularities’ on the R/C buildings’ damage response.

.- Machine learning-powered customizable urban land use classification for high-resolution satellite imagery.

.- MAtCHelper: An Automated Tool for Guiding in the Acceleration and Compression of Neural Networks.

.- Multi-Model Data Transfer by Knowledge Distillation for Enhancing Precipitation Nowcasting.

.- Reinforcement Learning for UPI Fraud Detection: Actor Critic Optimization Approach.

.- Robust Zero-Watermarking of Medical Images based ResNet-50.

.- Shoreline and Sea Level Changes Detection from Satellite Images Using Deep Learning.

.- Towards Cross-Domain Anomaly Detection in Cyber-Physical Systems: A Hybrid Approach.

.- A Content-Aware Collaborative Filtering Framework for Video Recommender Systems.

.- A Personalised Music Recommendation System based on User’s Emotions.

.- ColBic : a New Biclustering-based Collaborative Filtering.

.- Cross-domain recommendations using attention and multitask learning.

.- Enhancing Explainability in AI-Powered Data Retrieval Systems.

.- Improving the Diversity and Fairness in Job Recommendations using the Stable Matching Algorithm.

.- Personalized Hotel Recommendation System.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.