Madkour | Nanoelectronic Materials | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 116, 814 Seiten

Reihe: Advanced Structured Materials

Madkour Nanoelectronic Materials

Fundamentals and Applications
1. Auflage 2019
ISBN: 978-3-030-21621-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Fundamentals and Applications

E-Book, Englisch, Band 116, 814 Seiten

Reihe: Advanced Structured Materials

ISBN: 978-3-030-21621-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents synthesis techniques for the preparation of low-dimensional nanomaterials including 0D (quantum dots), 1D (nanowires, nanotubes) and 2D (thin films, few layers), as well as their potential applications in nanoelectronic systems. It focuses on the size effects involved in the transition from bulk materials to nanomaterials; the electronic properties of nanoscale devices; and different classes of nanomaterials from microelectronics to nanoelectronics, to molecular electronics. Furthermore, it demonstrates the structural stability, physical, chemical, magnetic, optical, electrical, thermal, electronic and mechanical properties of the nanomaterials. Subsequent chapters address their characterization, fabrication techniques from lab-scale to mass production, and functionality.  In turn, the book considers the environmental impact of nanotechnology and novel applications in the mechanical industries, energy harvesting, clean energy, manufacturing materials, electronics, transistors, health and medical therapy. In closing, it addresses the combination of biological systems with nanoelectronics and highlights examples of nanoelectronic-cell interfaces and other advanced medical applications.  The book answers the following questions: • What is different at the nanoscale? • What is new about nanoscience? • What are nanomaterials (NMs)? • What are the fundamental issues in nanomaterials? • Where are nanomaterials found? • What nanomaterials exist in nature? • What is the importance of NMs in our lives? • Why so much interest in nanomaterials? • What is at nanoscale in nanomaterials? • What is graphene? • Are pure low-dimensional systems interesting and worth pursuing? • Are nanotechnology products currently available? • What are sensors? • How can Artificial Intelligence (AI) and nanotechnology work together? • What are the recent advances in nanoelectronic materials? • What are the latest applications of NMs?  

Dr. LOUTFY H. MADKOUR has been a Professor of Physical Chemistry and Nano Science at the Department of Chemistry, Faculty of Science, Al Baha University, Saudi Arabia, since 2012. He received his B.Sc., M.Sc. and Ph.D. in Physical Chemistry from Cairo University, Minia University and Tanta University (Egypt), respectively. He began working as a Lecturer in Chemistry at Tanta University in 1982 and as a Professor of Physical Chemistry in 1999. He has conducted a series of studies in the fields of electrochemistry, corrosion science, density functional theory, molecular dynamic simulation, nanoscience, nanotechnology, nanomedicine, analytical chemistry, polarography, electrolytic extraction of heavy metals from natural ores and deposits, electrochemical thermodynamics and environmental chemistry. His previous research accomplishments include the biosynthesis of metallic nanoparticles (MNPs) and toxicology studies for pharmacological applications in medicine and therapy. He has published 150 peer-reviewed original research articles, 11 review articles, and 4 books on physical chemistry, practical and applied chemistry, corrosion science, nanoscience and nanomedicine.   Prof. Madkour is an Editorial Board member for several international journals, e.g. the International Journal of Industrial Chemistry (IJIC); International Journal of Ground Sediment & Water; Global Drugs and Therapeutics (GDT); Journal of Targeted Drug Delivery; Journal of Clinical and Medical Research; and International Journal of Environmental Chemistry. In addition to serving as a Reviewer for many international ELSEVIER and SPRINGER journals, he is a member of many prestigious international societies, including the American Association for the Advancement of Science (AAAS), European Desalination Society (EDS), Egyptian Chemical Society (ECS), Egyptian Corrosion Bulletin Society and American Chemical Society (ACS). 

Madkour Nanoelectronic Materials jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;About This Book;9
3;Summary;11
4;A Look Ahead;13
5;Contents;17
6;Contents;27
6.1;Editorial Board Member by Author;29
6.2;Recent Published Research Articles by Author;31
6.3;Recent Published Books by Author;35
7;Abbreviations;38
8;1 Introduction to Nanotechnology (NT) and Nanomaterials (NMs);45
8.1;Abstract;45
8.2;1.1 Nanotechnology Debate;46
8.3;1.2 Nanomaterials (NMs);62
8.3.1;1.2.1 What Are the Fundamental Issues in Nanomaterials?;62
8.3.2;1.2.2 Nano Scale and Nanostructures;65
8.3.3;1.2.3 Nanostructured Materials;68
8.4;1.3 The Nanoworld;70
8.5;1.4 Atoms, Clusters and Nanograins;74
8.6;1.5 What Is Different at the Nanoscale?;77
8.7;1.6 History of Nanomaterials;83
8.8;References;88
9;2 Principles of Computational Simulations Devices and Characterization of Nanoelectronic Materials;92
9.1;2.1 Charged Particle Single Nanometre Manufacturing;93
9.2;2.2 Exotic Effects and Potential;95
9.3;2.3 Preliminary Concepts: Elements from Solid State Physics;96
9.4;2.4 Computing Electronic Transport;96
9.4.1;2.4.1 Electronic Structure Calculations;96
9.4.2;2.4.2 Density-Functional Theory;97
9.4.3;2.4.3 Another Three Alternate Approaches Are;98
9.5;2.5 Basics of DFT and Methodology;105
9.6;2.6 Characterization of Nanomaterials;108
9.6.1;2.6.1 Morphological Characterizations;109
9.6.2;2.6.2 Structural Characterizations;110
9.6.3;2.6.3 Particle Size and Surface Area Characterization;113
9.6.4;2.6.4 Optical Characterizations;113
9.7;2.7 Characterization Techniques;115
9.7.1;2.7.1 Microscopy Techniques for 2D Materials;115
9.7.1.1;2.7.1.1 Atomic Force Microscopy;115
9.7.1.2;2.7.1.2 Ultrasonic Force Microscopy;116
9.7.1.3;2.7.1.3 Electron Microscopy Techniques;117
9.7.2;2.7.2 Raman Spectroscopy;119
9.7.3;2.7.3 Photoluminescence (PL) Spectroscopy;121
9.7.4;2.7.4 X-Ray Diffraction;122
9.7.5;2.7.5 Characterization Possibilities;124
9.8;References;124
10;3 Where Are Nanomaterials (Nms) Found?;133
10.1;3.1 Nanoparticles Are All Around Us;133
10.2;3.2 What Nanomaterials Exist in Nature?;140
10.3;3.3 Environmental Nanoparticles and Colloids;140
10.4;3.4 Humic Substances;140
10.5;3.5 Volcanic Ashes;140
10.6;3.6 Desert Sources of Nanoparticles;141
10.7;3.7 Biological Nanoparticles;142
10.8;References;142
11;4 Benefits of Nanomaterials and Nanowire Geometry;143
11.1;4.1 The Nanobulk Stage (10–15 Years);143
11.2;4.2 Advances of Nanomaterials (NMs);144
11.3;4.3 The Nanoworld Stage (15–40 Years);144
11.4;4.4 NMs Enhanced Surface Plasmon Resonance for Biological and Chemical Sensing Applications;145
11.5;4.5 Benefits of the Nanowire Geometry;150
11.5.1;4.5.1 Absorption;150
11.5.2;4.5.2 Exciton Formation;153
11.5.3;4.5.3 Charge Separation;154
11.5.4;4.5.4 Carrier Collection;154
11.5.5;4.5.5 Cost;158
11.6;4.6 Disadvantages of Nanomaterials (NMs);158
11.7;References;161
12;5 Why So Much Interest in Nanomaterials (NMs)?;164
12.1;5.1 Recent Advances of Nanostructured Materials;165
12.2;5.2 New Properties Can Be Created;165
12.3;5.3 Some Present and Future Applications of Nanomaterials;166
12.3.1;5.3.1 Applications of Nanowires;167
12.4;5.4 Engineered Nanoparticles Change Shape in Soil and Groundwater;168
12.5;5.5 Applications of Field-Effect Transistors (FET);173
12.6;5.6 Fabrication of 1-D Nanostructures;173
12.6.1;5.6.1 Carbon Nanotubes (CNTs);174
12.6.2;5.6.2 Silicon Nanowires (SiNWs);174
12.6.3;5.6.3 SiONWs Are Interest in SNOM and Integrated Optics;175
12.6.4;5.6.4 Conducting Polymer Nanowires (CP NWs);177
12.7;References;180
13;6 Examples of Nanomaterials with Various Morphologies;182
13.1;6.1 Carbon Nanotubes (CNTs);183
13.2;6.2 Nanoparticles;184
13.2.1;6.2.1 Classification of NPs;185
13.2.1.1;6.2.1.1 Carbon-Based NPs;185
13.2.1.2;6.2.1.2 Metallic Nano Particles;186
13.2.1.3;6.2.1.3 Ceramics NPs;189
13.2.1.4;6.2.1.4 Semiconductor NPs;189
13.2.1.5;6.2.1.5 Polymeric NPs;189
13.2.1.6;6.2.1.6 Lipid-Based NPs;189
13.3;6.3 Other Application Examples of Nanoparticles are;190
13.4;6.4 Quantum Dots;190
13.5;6.5 Nanoshell;193
13.6;6.6 Metal Rubber;194
13.7;6.7 Nanopores;195
13.8;6.8 Nanoparticles with Different Morphologies;196
13.8.1;6.8.1 Example of a Phase Contrast;202
13.8.2;6.8.2 Summary of Different Shapes for Various Metal Nanocrystals;203
13.9;References;204
14;7 Carbon Nanomaterials and Two-Dimensional Transition Metal Dichalcogenides (2D TMDCs);206
14.1;7.1 Classification of 2D Materials;209
14.1.1;7.1.1 Layered van der Waals Solids;209
14.1.2;7.1.2 Layered Ionic Solids;210
14.1.3;7.1.3 Surface Assisted Nonlayered Solids;210
14.2;7.2 2D Materials, Their Properties, and Applications;210
14.3;7.3 Crystal Structure of 2D Materials;217
14.4;7.4 Electronic, Optical, and Mechanical Properties of 2D Materials;219
14.5;7.5 2D van der Waals Heterostructures;222
14.6;7.6 Fabrication of 2D Heterostructures;226
14.6.1;7.6.1 Heterostructures by Manual Stacking;226
14.6.2;7.6.2 Direct Synthesis of 2D Heterostructures;228
14.7;7.7 2D Heterostructures and Their Applications;230
14.7.1;7.7.1 Biosensor;232
14.7.2;7.7.2 Solar Cells (Photovoltaic);234
14.7.3;7.7.3 Field Effect Transistors (FET);236
14.7.4;7.7.4 Photodetector;238
14.7.5;7.7.5 Thermoelectric Devices;240
14.8;7.8 Fullerenes Molecules;241
14.9;7.9 Diamond Molecules;244
14.10;7.10 Carbon Nanotubes (Carbon-Based NPs);245
14.11;7.11 Graphene Background;252
14.12;7.12 Potential Applications of Graphene;258
14.12.1;7.12.1 Solar Cells/Photovoltaics;261
14.12.2;7.12.2 Semiconductors;262
14.12.3;7.12.3 Water Filtration;263
14.12.4;7.12.4 Superconductivity;264
14.12.5;7.12.5 The Latest Developments Graphene Supercapacitors;264
14.13;7.13 Applications of Carbon Nanotubes (CNTs);266
14.13.1;7.13.1 Carbon Nanotubes and Electronics;268
14.13.2;7.13.2 Carbon Nanotubes and Energy;268
14.13.3;7.13.3 Carbon Nanotubes in Healthcare;268
14.13.4;7.13.4 Carbon Nanotubes and the Environment;269
14.14;7.14 The Future of Graphene Research;269
14.15;References;275
15;8 Nanoelectronics and Role of Surfaces Interfaces;287
15.1;8.1 The Development of Microelectronics;287
15.2;8.2 The Region of Nanostructures;288
15.3;8.3 Crystal Structure and Dense Planes;289
15.4;8.4 The Surface Energy ?;291
15.5;8.5 Transistor Scaling;293
15.5.1;8.5.1 Single-Electron Transistor (SET);296
15.6;8.6 Molecular Electronics;300
15.7;8.7 Multi Walled Carbon Nanotubes (CNTs);300
15.8;References;306
16;9 Classification of Nanostructured Materials;308
16.1;9.1 Glitter’s Classification of Nanostructured Materials (NSM);312
16.2;9.2 Classification of Nanomaterials by Dimensionality;316
16.3;9.3 Some Classifications Definitions;320
16.3.1;9.3.1 Nanostructures (NSs);320
16.3.2;9.3.2 Nanostructured Materials (NSMs);320
16.3.3;9.3.3 Nanocomposites (NCMs);320
16.4;9.4 Elementary Building Units (Nanostructures);321
16.5;9.5 Quantum Confinement from 3D to 0D;321
16.5.1;9.5.1 Physical and Chemical Nature of Nanoparticles;327
16.6;9.6 Matrix-Reinforced and Layered Nanocomposites;330
16.6.1;9.6.1 Microcrystal Matrix (Micro-Nano Type);331
16.6.2;9.6.2 Nanocrystal Matrix (Nanocomposites);331
16.7;9.7 Nanowires (NWs);331
16.7.1;9.7.1 Unique Applications of Nanowires;335
16.7.2;9.7.2 Different Types of Nanowires;336
16.7.3;9.7.3 Basic Growth Mechanism;336
16.7.4;9.7.4 Why Study Nanowires?;339
16.7.5;9.7.5 Types of Nanowires (NWs);345
16.8;References;345
17;10 Processing of Nanomaterials (NMs);347
17.1;10.1 Top-Down Approaches;352
17.1.1;10.1.1 Ball Milling: Mechanical Crushing of Solids into Nanocrystallites;354
17.1.2;10.1.2 Photolithography;355
17.1.3;10.1.3 Gas Phase Processes;357
17.2;10.2 Bottom-Up Approach;357
17.2.1;10.2.1 Gas Phase Processes;359
17.2.2;10.2.2 Liquid Phase Processes: Sol-Gel Process;362
17.2.3;10.2.3 Liquid Phase Processes: Synthesis of Metal Nanoparticles;365
17.2.4;10.2.4 Material Synthesis;373
17.3;10.3 Two Approaches with the Same Goal;377
17.4;10.4 Methods for Creating Nanostructures;378
17.4.1;10.4.1 Mechanical Grinding;378
17.4.2;10.4.2 Wet Chemical Synthesis of Nanomaterials;380
17.4.2.1;10.4.2.1 Sol-Gel Process;380
17.4.3;10.4.3 Gas Phase Synthesis of Nanomaterials;382
17.4.3.1;10.4.3.1 Furnace;383
17.4.3.2;10.4.3.2 Flame Assisted Ultrasonic Spray Pyrolysis;384
17.4.3.3;10.4.3.3 Gas Condensation Processing (GCP);385
17.4.3.4;10.4.3.4 Chemical Vapour Condensation (CVC);387
17.4.4;10.4.4 Sputtered Plasma Processing;389
17.4.4.1;10.4.4.1 Microwave Plasma Processing;389
17.4.5;10.4.5 Particle Precipitation Aided;390
17.4.6;10.4.6 Laser Ablation;390
17.5;References;391
18;11 Techniques for Elaboration of Nanomaterials;392
18.1;11.1 Vapor-Phase Synthesis;394
18.1.1;11.1.1 Gas-Vapor Deposition;396
18.1.2;11.1.2 Plasma-Based Synthesis;396
18.1.3;11.1.3 Molecular Beam Epitaxy;398
18.1.4;11.1.4 Inert Gas Condensation;399
18.1.5;11.1.5 Flame Pyrolysis;400
18.2;11.2 Liquid Phase Synthesis;401
18.2.1;11.2.1 Colloidal Methods;401
18.2.2;11.2.2 Solution Precipitation;402
18.2.3;11.2.3 Electrodeposition;402
18.3;11.3 Sol–Gel Technique;404
18.3.1;11.3.1 Sol–Gel Process;406
18.3.2;11.3.2 Sol–Gel Coating Processes;408
18.3.3;11.3.3 Reverse Micelles as Nanoreactors;411
18.3.4;11.3.4 Sol–Gel Applications;412
18.4;11.4 Solid-State Phase Synthesis;412
18.4.1;11.4.1 Mechanical Milling, Attrition and Alloying;413
18.4.2;11.4.2 Severe Plastic Deformation;416
18.5;11.5 Other Methods;419
18.6;11.6 Consolidation of Nanopowders;420
18.6.1;11.6.1 Sintering of Nanoparticles;421
18.6.2;11.6.2 Non-conventional Processing;424
18.6.2.1;11.6.2.1 Microwave Sintering;424
18.6.2.2;11.6.2.2 Field-Assisted Sintering (FAS);425
18.6.2.3;11.6.2.3 Shockwave Consolidation;427
18.7;References;428
19;12 Synthesis Methods For 2D Nanostructured Materials, Nanoparticles (NPs), Nanotubes (NTs) and Nanowires (NWs);429
19.1;12.1 Synthesis Methods for 2D Materials;429
19.1.1;12.1.1 Micromechanical Exfoliation Using Scotch Tape;430
19.1.2;12.1.2 Liquid Exfoliation;430
19.1.3;12.1.3 Chemical Vapor Deposition (CVD);433
19.1.4;12.1.4 Van der Waal Epitaxial Growth on Substrate;434
19.1.5;12.1.5 Hydrothermal Synthesis;437
19.2;12.2 Synthesis Methods of Nanoparticles NPs;439
19.2.1;12.2.1 Top-Down Syntheses;440
19.2.2;12.2.2 Bottom-Up Syntheses;441
19.3;12.3 Synthesis Methods of Nanotubes (NTs);445
19.3.1;12.3.1 Arc Discharge;445
19.3.2;12.3.2 Laser Ablation for Production of SWNTs;446
19.3.3;12.3.3 Chemical Vapour Deposition (CVD);446
19.3.4;12.3.4 Flame Synthesis;447
19.4;12.4 Synthesis Methods of Nanowires NWs;449
19.4.1;12.4.1 Lithography (Top-Down);451
19.4.2;12.4.2 Spontaneous Growth;453
19.4.2.1;12.4.2.1 Evaporation (Dissolution) Condensation;455
19.4.2.2;12.4.2.2 Vapor (or Solid)-Liquid-Solid Growth (VLS or SLS);457
19.4.2.3;12.4.2.3 Stress Induced Re-Crystallization;471
19.4.3;12.4.3 Template-Based Synthesis;472
19.4.3.1;12.4.3.1 Electrochemical Deposition;478
19.4.3.2;12.4.3.2 Electrophoretic Deposition (Electrophoresis);484
19.4.4;12.4.4 Electro-spinning;486
19.5;References;487
20;13 Chemistry and Physics for Nanostructures Semiconductivity;493
20.1;13.1 Conductivity of Nanowires NWs;495
20.2;13.2 Welding Nanowires;497
20.3;13.3 Silicon-Germanium Nanowires SiGe NWs;498
20.4;13.4 Growth Techniques, Morphology, and Structural Properties of SiGe NWs;500
20.4.1;13.4.1 Alloyed Nanowires;500
20.4.2;13.4.2 Axial Heterostructures;502
20.4.3;13.4.3 Radial Heterostructures;503
20.5;13.5 Chemical and Physical Properties of Nanowires;504
20.5.1;13.5.1 Electronic Properties;504
20.5.1.1;13.5.1.1 Modulation of the Electronic Properties by Composition Control;504
20.5.1.2;13.5.1.2 Interfaces at Work: Strain, Band-Offset, and Carrier Gases;505
20.5.1.3;13.5.1.3 Doped Nanowires;505
20.5.2;13.5.2 Thermal and Thermoelectric Properties;506
20.6;13.6 Theoretical Modeling;507
20.6.1;13.6.1 Electronic Structure;507
20.6.1.1;13.6.1.1 Quantum Confinement Effect and Band Offset;507
20.6.1.2;13.6.1.2 Size Effects;507
20.6.1.3;13.6.1.3 Alloying and Interface Effects;507
20.6.1.4;13.6.1.4 Strain Effects;508
20.6.1.5;13.6.1.5 Addition of Impurities;508
20.6.1.6;13.6.1.6 Electronic Transport;509
20.6.1.7;13.6.1.7 Optical Properties;509
20.6.2;13.6.2 Phonons and Thermal Conductivity;509
20.6.2.1;13.6.2.1 Breakdown of Fourier’s Law at Nanoscale;509
20.6.2.2;13.6.2.2 Numerical Simulations of Thermal Properties;509
20.7;References;511
21;14 Properties of Nanostructured Materials (NSMs) and Physicochemical Properties of (NPs);515
21.1;14.1 Properties of Nanoscale Matter;516
21.2;14.2 Nanoscale Materials Show Quantum Confinement Effects;516
21.2.1;14.2.1 Nanoscale Luminescent Materials Are Mostly Less Efficient Than Microscale Materials;518
21.2.2;14.2.2 CdSe Nanocrystals;519
21.3;14.3 The Physical Properties of Nanoclusters;523
21.3.1;14.3.1 The Morphology;523
21.3.2;14.3.2 The Lattice Parameter;527
21.3.3;14.3.3 The Phase Changes;529
21.4;14.4 The Electronic Properties;536
21.5;14.5 The Magnetic Properties and Classifications of Magnetic Nanomaterials;546
21.6;14.6 The Optical Properties;554
21.7;14.7 The Electrical Properties;562
21.8;14.8 The Mechanical Properties of Nanomaterials;567
21.8.1;14.8.1 Elasticity, Plasticity, Dislocations, Hardening, Twinning, Toughness …;569
21.8.2;14.8.2 The Role of Grain Boundaries;578
21.8.3;14.8.3 Hardness, Ductility, Toughness of Nanomaterials;579
21.9;14.9 Thermal Properties of NSMs;593
21.10;14.10 Chemical Properties of NSMs;595
21.11;14.11 Physicochemical Properties of NPs;596
21.11.1;14.11.1 Electronic and Optical Properties;596
21.11.2;14.11.2 Magnetic Properties;597
21.11.3;14.11.3 Mechanical Properties;597
21.11.4;14.11.4 Thermal Properties;599
21.12;References;599
22;15 Applications of Nanomaterials and Nanoparticles;601
22.1;15.1 Applications of NMs in Mechanical Industries;601
22.1.1;15.1.1 Functional Coatings and Layers;604
22.1.2;15.1.2 MR Contrast Enhancement and Hyperthermia;610
22.2;15.2 Applications of NMs in Health and Medical Therapy;611
22.3;15.3 Applications in Manufacturing and Materials;619
22.4;15.4 Applications in the Environment;619
22.5;15.5 Applications in the Electronics;622
22.6;15.6 Applications in Energy Harvesting;623
22.7;15.7 Current and Future Trends;625
22.8;15.8 Examples of Nanomaterials’ Applications;625
22.8.1;15.8.1 Fuel Cells;625
22.8.2;15.8.2 Catalysis;627
22.8.3;15.8.3 Phosphors for High-Definition TV;628
22.8.4;15.8.4 Next-Generation Computer Chips;629
22.8.5;15.8.5 Elimination of Pollutants;629
22.8.6;15.8.6 Sun-Screen Lotion;630
22.8.7;15.8.7 Sensors;630
22.8.8;15.8.8 Tools;631
22.8.9;15.8.9 Nanomedicine;631
22.8.10;15.8.10 Paint, Ink;632
22.8.11;15.8.11 Nanoinclusions;633
22.8.12;15.8.12 Deodorant/Antiperspirant (Shaving/Depilatory Products);634
22.9;References;635
23;16 Environmental Impact of Nanotechnology and Novel Applications of Nano Materials and Nano Devices;640
23.1;16.1 From Microelectronics to Nanoelectronics and Molecular Electronics;642
23.2;16.2 Nano in Energy and Clean Energy;645
23.3;16.3 The Environmental Impact of Nanotechnology;652
23.3.1;16.3.1 Positive Impacts;653
23.3.2;16.3.2 Negative Impacts;654
23.3.3;16.3.3 Green Technology;654
23.4;16.4 AI and Nanotechnology How Do They Work Together?;654
23.4.1;16.4.1 Microscopy;655
23.4.2;16.4.2 Chemical Modelling;656
23.4.3;16.4.3 Nanocomputing;656
23.5;16.5 Novel Nanotubes and Encapsulated Nanowires;657
23.5.1;16.5.1 Carbon Nanotube Sensors—Applications and Advantages;658
23.5.2;16.5.2 Carbon Nanotube Optics and Their Uses;661
23.5.3;16.5.3 Graphene as a Renewable Energy [134];663
23.6;16.6 Novel Applications of Nanowires and Nanotubes;665
23.6.1;16.6.1 Novel Photodetectors;666
23.6.2;16.6.2 White Light-Emitting Diodes;667
23.6.3;16.6.3 Nanowire Applications in Electronics;668
23.6.4;16.6.4 Devices and Applications of SiGe Nanostructures;669
23.6.5;16.6.5 High-Performance Nanoelectronic Components;670
23.6.6;16.6.6 Si1?XGex Alloy Nanowire Transistor;670
23.6.7;16.6.7 Si-Shell Ge-Core Nanowire Transistor;670
23.6.8;16.6.8 From Quantum Transport to Superconductivity: SiGe Nanowires as Platforms for Fundamental Physics Studies;670
23.7;16.7 Nanowire-Based Transistors (Nanotube Field-Effect Transistor);671
23.7.1;16.7.1 Nanowire Based Field Effect Transistors;672
23.7.2;16.7.2 Sensing of Proteins and Chemicals Using Semiconductor Nanowires;673
23.7.3;16.7.3 Limitations of Sensing with Silicon Nanowire FET Devices;674
23.7.4;16.7.4 Field Emitting Transistor (FET) Based on C-NTs;674
23.7.5;16.7.5 Logical Circuits;677
23.7.6;16.7.6 Voltage Inverter;677
23.7.7;16.7.7 Chips with Logical Elements;677
23.8;16.8 Sensing Devices;680
23.9;16.9 Racetrack Memory;681
23.10;16.10 Nanowire-Based Metamaterials;686
23.11;16.11 Indicators and Flat Displays;688
23.11.1;16.11.1 Thermometer;690
23.12;16.12 Nanowire Photovoltaics;690
23.12.1;16.12.1 Silicon Nanowire Based Solar Cells and Anodes for Li-Ion Batteries;692
23.12.2;16.12.2 Dye-Sensitized Solar Cells;693
23.13;16.13 Nanowires and Nano-Composite as Corrosion Inhibitors;695
23.13.1;16.13.1 Corrosion Resistant of ZnO Nanowires Coatings;697
23.13.2;16.13.2 Corrosion Resistance of Nanoparticle—Incorporated Nano Coatings;700
23.13.3;16.13.3 Novel Advantage of Nano-Coatings [172];701
23.13.4;16.13.4 Nanoparticle—Based Coatings for Magnesium Alloys with Thermal and Mechanical Stability;701
23.13.5;16.13.5 Corrosion Resistant Zeolite Coatings;702
23.13.6;16.13.6 Epoxy Coatings-Influence of Nanoparticles on the Anti-corrosion and Mechanical Properties of Epoxy Coatings;706
23.13.7;16.13.7 Nano Particle Incorporated Self-cleaning Paints and Biocidal Coatings;707
23.13.8;16.13.8 Nanoparticle Based Antimicrobial Corrosion Coatings;708
23.14;16.14 Superconducting Nanowire Single-Photon Detectors (SNSPDs);710
23.14.1;16.14.1 Origins of Device Concept;711
23.14.2;16.14.2 SNSPD Device Physics;713
23.14.3;16.14.3 Evolution of SNSPD Devices;715
23.14.4;16.14.4 Noise Mechanisms in SNSPDs: Dark Counts and Timing Jitter;715
23.14.5;16.14.5 Cooling, Optical Coupling and Device Readout;718
23.15;16.15 Superconducting Nanowire Photodetector Arrays;720
23.15.1;16.15.1 Theory of Operation;721
23.15.2;16.15.2 Example Applications of the SNPD Array Include;722
23.16;References;723
24;17 Interfacing Biology Systems with Nanoelectronics for Nanodevices;735
24.1;17.1 Nanoelectronic-Biological Interfaces Enable;735
24.2;17.2 Molecular Biomimetic: Nanotechnology Through Biology;738
24.3;17.3 Fundamentals of NanoFET in Biology and Medicine;743
24.3.1;17.3.1 Chemical Synthesis of NanoFETs;744
24.4;17.4 Multiplexed Extracellular Electrical Recording;746
24.4.1;17.4.1 Electrical Interfacing with Cultured Neurons;747
24.4.2;17.4.2 Recording from Cardiomyocyte Monolayers;748
24.4.3;17.4.3 Recording from Tissues and Organs;748
24.4.4;17.4.4 Challenges and Promises;749
24.5;17.5 Intracellular Electrical Recording;749
24.5.1;17.5.1 Designs and Implementation of Intracellular NanoFET Probes;752
24.5.2;17.5.2 Challenges and Promises;753
24.6;17.6 Nanoelectronics Innervated Synthetic Tissues;754
24.6.1;17.6.1 A New Concept of Merging Electronics with Cellular Systems;756
24.6.2;17.6.2 Designs and Preparation of Synthetic Tissues;756
24.6.3;17.6.3 Challenges and Promises;758
24.7;17.7 Application Areas of Biosensors and -Assays;758
24.8;17.8 Selection of Inorganic-Binding Proteins Through Display Technologies;763
24.8.1;17.8.1 Overview on Nanowire Fabrication;766
24.8.2;17.8.2 Bio-nanowire Device Interface;767
24.8.3;17.8.3 Nanowire Nanosensors: Beginning;768
24.8.4;17.8.4 Multiplexed Cancer Marker Detection;769
24.8.5;17.8.5 Undiluted Blood Serum Analysis;771
24.8.6;17.8.6 Nanoelectronic-Cell Interfaces;771
24.9;17.9 Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices;772
24.10;17.10 Future Vision for Life Sciences;780
24.11;References;784
25;Future Perspectives;794
26;Conclusions;797
27;Bibliography;800
28;Further Readings;813



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.