Machine Learning | Buch | 978-0-08-100659-7 | sack.de

Buch, Englisch, 580 Seiten, Format (B × H): 189 mm x 233 mm, Gewicht: 1201 g

Machine Learning

A Constraint-Based Approach
Erscheinungsjahr 2017
ISBN: 978-0-08-100659-7
Verlag: Elsevier Science & Technology

A Constraint-Based Approach

Buch, Englisch, 580 Seiten, Format (B × H): 189 mm x 233 mm, Gewicht: 1201 g

ISBN: 978-0-08-100659-7
Verlag: Elsevier Science & Technology


Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines.

The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based approach followed in this book.

This book presents a simpler unified notion of regularization, which is strictly connected with the parsimony principle, and includes many solved exercises that are classified according to the Donald Knuth ranking of difficulty, which essentially consists of a mix of warm-up exercises that lead to deeper research problems. A software simulator is also included.

Machine Learning jetzt bestellen!

Zielgruppe


<p>Upper level undergraduate and graduate students taking a machine learning course in computer science departments and professionals involved in relevant areas of artificial intelligence</p>

Weitere Infos & Material


1. The Big Picture2. Learning Principles3. Linear-Threshold Machines4. Kernel Machines5. Deep Architectures6. Learning and Reasoning with Constraints7. Epilogue8. Answers to selected exercises

Appendices:Constrained optimization in Finite DimensionsRegularization operatorsCalculus of variationsIndex to Notations



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.