Luy / Russer | Silicon-Based Millimeter-Wave Devices | E-Book | sack.de
E-Book

E-Book, Englisch, Band 32, 343 Seiten, eBook

Reihe: Springer Series in Electronics and Photonics

Luy / Russer Silicon-Based Millimeter-Wave Devices


1994
ISBN: 978-3-642-79031-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 32, 343 Seiten, eBook

Reihe: Springer Series in Electronics and Photonics

ISBN: 978-3-642-79031-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Silicon-Based Millimeter-Wave Devices describes field-theoretical methods for the design and analysis of planar waveguide structures and antennas. The principles and limitations of transit-time devices with different injection mechanisms are discussed, as are aspects of fabrication and characterization. The physical properties of silicon Schottky contacts and diodes are treated in a separate chapter. Two chapters cover the silicon/germanium devices: physics and RF properties of the heterobipolar transistor and quantum effect devices such as the resonant tunneling element are described. The integration of devices in monolithic circuits is explained and advanced technologies are presented along with the self-mixing oscillator operation. Finally sensor and system applications are considered.
Luy / Russer Silicon-Based Millimeter-Wave Devices jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Fundamentals.- 1.1 Silicon as the Base Material for MMICs.- 1.2 Linear Passive Planar Millimeter Wave Circuits on Silicon.- 1.2.1 Wave Propagation in Planar Structures.- 1.2.2 Planar Transmission Lines.- 1.2.3 Planar Transmission-Line Discontinuities.- 1.2.4 Planar Resonators.- 1.3 Planar Millimeter-Wave Antennas on Silicon.- 1.3.1 Antenna Elements.- 1.3.1 Antenna Arrays.- 1.4 Planar Millimeter-Wave Circuits Containing Active and Nonlinear Elements.- 1.5 Appendix: Closed-Form Expressions for Transmission-Line Characteristics.- References.- 2. Transit-Time Devices.- 2.1 Principles of Transit-Time-Induced Negative Resistance.- 2.2 Injection Mechanisms.- 2.2.1 Impact Ionisation — IMPATT Diode.- 2.2.2 Thermionic Emission — BARITT Diode.- 2.2.3 Tunnel Injection.- 2.2.4 The Misawa Mode.- 2.3 Numerical Large-Signal Simulations.- 2.4 Skin Effect.- 2.5 Thermal Properties.- 2.5.1 Integrated Transit-Time Devices.- 2.5.2 Diamond Heat Sinks.- 2.5.3 Ring Diodes.- 2.5.4 Transient Thermal Resistance.- 2.5.5 Measurement of the Thermal Resistance.- 2.6 Design Constraints.- 2.7 Technology.- 2.7.1 Material Growth.- 2.7.2 Contacts.- 2.7.3 Handling Techniques.- 2.7.4 Packaging.- 2.8 Performance.- 2.8.1 Power.- 2.8.2 Efficiency.- 2.8.3 Noise.- 2.9 New Transit-Time Device Concepts.- References.- 3. Schottky Contacts on Silicon.- 3.1 Schottky-Barrier Models.- 3.1.1 The Schottky Mott Model.- 3.1.2 The Space Charge Region.- 3.1.3 Bardeen’s Model.- 3.1.4 Linear Models.- 3.1.5 Barrier Height Correlations.- 3.1.6 Advanced Models: Charge Transfer Across the Interface.- 3.2 Epitaxial Diodes on Si.- 3.2.1 Single-Crystalline Schottky Contacts.- 3.2.2 Other Orientational Dependences.- 3.2.3 CaSi2 and Ag.- 3.2.4 Polycrystalline Epitaxial Contacts on Si.- 3.2.5 Unconventional Metals with Small Lattice Mismatch to Si.- 3.2.6 Summary.- 3.3 Electrical Transport Properties.- 3.3.1 Emission Over the Barrier.- 3.3.2 Tunneling Through the Barrier.- 3.3.3 Generation Recombination in the Space Charge Region.- 3.3.4 Minority Carrier Injection.- 3.3.5 Inhomogeneities in Schottky Contacts.- 3.3.6 Noise Properties.- 3.3.7 Microwave Properties.- 3.4 Schottky-Barrier Measurements.- 3.4.1 Current-Voltage Curves.- 3.4.2 Capacitance Measurements.- 3.4.3 Internal Photoemission (Photoresponse).- 3.4.4 External Photoemission.- 3.4.5 Results for Polycrystalline Contacts.- 3.5 Conclusions.- References.- 4. SiGe Heterojunction Bipolar Transistors.- 4.1 Operation Principle of Homojunction and Heterojunction Bipolar Transistors.- 4.1.1 The Bipolar Junction Transistor and Its Physical Limits.- 4.1.2 The Heterojunction Bipolar Transistor.- 4.1.3 The Si/Ge Material System.- 4.2 Design of SiGe HBT Layers.- 4.2.1 Emitter Design.- 4.2.2 Base Design.- 4.2.3 Collector Design.- 4.3 Fabrication Technologies and Device Performance.- 4.4 Applications of SiGe HBTs.- 4.5 Conclusion.- References.- 5. Silicon Millimeter-Wave Integrated Circuits.- 5.1 Silicon as the Substrate Material.- 5.1.1 Silicon-Substrate Waveguide Parameters.- 5.1.2 Surface Waves.- 5.2 Millimeter-Wave Sources for SIMMWICs.- 5.2.1 IMPATT Oscillator.- 5.2.2 Varactor-Tuned Oscillator.- 5.2.3 HBT Oscillator.- 5.3 SIMMWIC Transmitter.- 5.3.1 Thermal Limitation of Monolithic IMPATT Diodes.- 5.3.2 Coplanar Slot-Line Transmitter.- 5.4 SIMMWIC Receiver.- 5.4.1 Microstrip Receiver.- 5.4.2 Coplanar Slot-Line Receiver.- 5.4.3 Resonant Tunneling Rectenna.- 5.5 SIMMWIC Switch.- References.- 6. Self-Mixing Oscillators.- 6.1 Principle of Operation.- 6.2 Linear Disturbance Theory.- 6.2.1 Model for the Self-mixing Oscillator.- 6.2.2 Conversion-Gain Factors.- 6.2.3 Simplified Device Model.- 6.3 Matrix Formulation of Conversion Gain.- 6.3.1 Conversion Matrix.- 6.3.2 Conversion Gain.- 6.4 Noise in Self-Mixing Oscillators.- 6.4.1 RF Noise.- 6.4.2 Low Frequency Noise.- 6.5 Numerical Simulations.- 6.6 Measuring Techniques and Experimental Results.- 6.6.1 Measuring Set-up.- 6.6.2 Experimental Results of a Si-IMPATT Device in the V-band.- References.- 7. Silicon Millimeter-Wave Integrated Circuit Technology.- 7.1 Technological Requirements for a Millimeter-Wave Substrate.- 7.1.1 Historical Background of SIMMWIC Technology.- 7.1.2 Characterization of High-Resistive Silicon Substrates.- 7.1.3 Behaviour of High-Resistive Silicon Substrates During Fabrication Processes.- 7.2 Basic Technologies.- 7.2.1 Buried Layers.- 7.2.2 Epitaxial Growth.- 7.2.3 Lithography.- 7.2.4 Pattern Transfer.- 7.2.5 Metallization and Air Bridge Technology.- 7.3 Fabrication Process and Monolithic Integration of Two-Terminal Devices.- 7.3.1 Fabrication Process of Coplanar Schottky-Barrier Diodes.- 7.3.2 Fabrication Process of Monolithically Integrated Transit-Time Diodes.- 7.3.3 Fabrication Process of Lateral PIN Diodes.- 7.4 Fabrication Process of Three-Terminal Devices.- 7.4.1 Bipolar Transistors.- 7.4.2 Hetero Bipolar Transistors for SIMMWICs.- 7.5 Summary and Prospects.- References.- 8. Future Devices.- 8.1 Physics and Applications of Si/SiGe, Double-Barrier Structures.- 8.1.1 Band Structure of Si/SiGe.- 8.1.2 Tunneling Current Calculation.- 8.1.3 The Quantum-Mechanical Concept of Electromagnetic Oscillations from Resonant-Tunneling Double Barriers.- 8.1.4 Calculation of fmax for n-type Si/SiGe Tunneling Diodes.- 8.1.5 Equivalent-Circuit Analysis of Oscillation Frequency and Output Power from an n-type Si/SiGe Double-Barrier Diode.- 8.1.6 Millimeter-Wave Detection by Si/SiGe Double Barriers.- 8.2 The Si/SiGe Quantum Barrier Varactor Diode.- 8.3 Field-Effect Devices: Si/SiGe MODFET and MOST, ?-Doped Si FET.- 8.3.1 dc and HF Modeling.- 8.3.2 Modeling Results and Comparison with Si n- and p-MOSTs.- 8.3.3 Experimental Results.- 8.3.4 Processing Steps: Growth and Post Processing.- Appendix 8.A The Effective-Mass Approximation.- Appendix 8.B Maximum Oscillation Frequency and Power Generation.- References.- 9. Future Applications.- 9.1 Sensor Applications.- 9.1.1 Measurement Principles.- 9.1.2 Radiometric Sensors.- 9.1.3 cw Radar Sensors.- 9.1.4 Frequency Modulated Radar Sensors.- 9.1.5 Pulse-Modulated Radars.- 9.2 Communication Applications.- 9.2.1 General Considerations.- 9.2.2 Identification Card Systems.- 9.2.3 Short-Range Data Transmission.- 9.2.4 Information Systems.- 9.2.5 Millimeter-Wave Data Bus.- 9.3 System Requirements.- 9.3.1 General System Aspects.- 9.3.2 Frequency Stability.- 9.3.3 Environmental Conditions.- 9.3.4 Packaging.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.