Luo / Zhou / Chen | Trust-based Collective View Prediction | Buch | 978-1-4614-7201-8 | sack.de

Buch, Englisch, 146 Seiten, HC gerader Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 3672 g

Luo / Zhou / Chen

Trust-based Collective View Prediction

Buch, Englisch, 146 Seiten, HC gerader Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 3672 g

ISBN: 978-1-4614-7201-8
Verlag: Springer


Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users’ past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View Prediction describes new approaches for tackling this problem by utilizing users’ trust relationships from the perspectives of fundamental theory, trust-based collective view prediction algorithms and real case studies.

The book consists of two main parts – a theoretical foundation and an algorithmic study. The first part will review several basic concepts and methods related to collective view prediction, such as state-of-the-art recommender systems, sentimental analysis, collective view, trust management, the Relationship of Collective View and Trustworthy, and trust in collective view prediction. In the second part, the authors present their models and algorithms based on a quantitative analysis of more than 300 thousand users’ data from popular product-reviewing websites. They also introduce two new trust-based prediction algorithms, one collaborative algorithm based on the second-order Markov random walk model, and one Bayesian fitting model for combining multiple predictors.

The discussed concepts, developed algorithms, empirical results, evaluation methodologies and the robust analysis framework described in Trust-based Collective View Prediction will not only provide valuable insights and findings to related research communities and peers, but also showcase the great potential to encourage industries and business partners tointegrate these techniques into new applications.

Luo / Zhou / Chen Trust-based Collective View Prediction jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface.- Introduction.- Related Work.- Collaborative Filtering.- Sentiment Analysis.- Theory Foundations.- Models, Methods and Algorithms.- Framework for Robustness Analysis.- Conclusions.- Appendix.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.