Luo / Vidal / Acho | Wind Turbine Control and Monitoring | E-Book | sack.de
E-Book

E-Book, Englisch, 462 Seiten, eBook

Reihe: Advances in Industrial Control

Luo / Vidal / Acho Wind Turbine Control and Monitoring


1. Auflage 2014
ISBN: 978-3-319-08413-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 462 Seiten, eBook

Reihe: Advances in Industrial Control

ISBN: 978-3-319-08413-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, ‘Wind Turbine Control and Monitoring’ presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, computer tools for modeling and simulation, and advances the current state-of-the-art on wind turbine monitoring and fault diagnosis; power converter systems; and cooperative & fault-tolerant control systems for maximizing the wind power generation and reducing the maintenance cost.This book is primarily intended for researchers in the field of wind turbines, control, mechatronics and energy; postgraduates in the field of mechanical and electrical engineering; and graduate and senior undergraduate students in engineering wishing to expand their knowledge of wind energy systems. The book will also interest practicing engineers dealing with wind technology who will benefit from the comprehensive coverage of the theoretic control topics, the simplicity of the models and the use of commonly available control algorithms and monitoring techniques.

Luo / Vidal / Acho Wind Turbine Control and Monitoring jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Contents;9
3;Part IPower Converter Systems;11
4;1 Modeling and Control of PMSG-Based Variable-Speed Wind Turbine;12
4.1;Abstract;12
4.2;1.1…Introduction;13
4.3;1.2…Dynamic Model of PMSG-WT-Based Power Systems;14
4.3.1;1.2.1 Permanent-Magnetic Synchronous-Generator;16
4.3.2;1.2.2 Transmission Line;17
4.3.3;1.2.3 Transformer;17
4.3.4;1.2.4 Cable;17
4.3.5;1.2.5 RL Load;17
4.3.6;1.2.6 RL-Filter on the Grid-Side Converter;18
4.3.7;1.2.7 Voltage Source Converter Controller;18
4.4;1.3…The Supervisory Reactive Power Control;21
4.5;1.4…Case Studies;23
4.5.1;1.4.1 Wind-Speed Variation;23
4.5.2;1.4.2 Local-Load Variation;25
4.5.3;1.4.3 Voltage Sag in the Infinite Bus;25
4.5.4;1.4.4 Fault-Ride Through Study;26
4.6;1.5…Conclusion;28
4.7;Acknowledgment;28
4.8;A.0. Appendix;29
4.9;A.0. Future Work;29
4.10;References;30
5;2 High-Order Sliding Mode Control of DFIG-Based Wind Turbines;31
5.1;Abstract;31
5.2;2.1…Introduction;32
5.3;2.2…The Wind Turbine Modeling;33
5.3.1;2.2.1 Turbine Model;33
5.3.2;2.2.2 Generator Model;34
5.4;2.3…Control of the DFIG-Based Wind Turbine;36
5.4.1;2.3.1 Problem Formulation;36
5.4.2;2.3.2 High-Order Sliding Modes Control Design;37
5.4.3;2.3.3 High-Gain Observer;40
5.4.4;2.3.4 High-Order Sliding Mode Speed Observer;43
5.5;2.4…Simulation Using the FAST Code;47
5.5.1;2.4.1 Test Conditions;49
5.5.2;2.4.2 HOSM Control Performances;49
5.5.3;2.4.3 HOSM Control Performances with High-Gain Observer;50
5.5.4;2.4.4 Sensorless HOSM Control Performances;51
5.5.5;2.4.5 HOSM Control FRT Performances;52
5.6;2.5…Conclusions;54
5.7;2.6…Future Work;54
5.8;A.0. Appendix;54
5.9;References;55
6;3 Maximum Power Point Tracking Control of Wind Energy Conversion Systems;57
6.1;Abstract;57
6.2;3.1…Introduction;58
6.3;3.2…Model of Wind Turbine;59
6.4;3.3…Maximum Power Point Tracking;61
6.5;3.4…Model of Wind Energy Conversion System;62
6.6;3.5…Control Strategy for Wind Energy Integration into Power Network;66
6.6.1;3.5.1 DC-Link Voltage Controller Design;66
6.6.2;3.5.2 d-Axis Current Controller Design;68
6.6.3;3.5.3 q-Axis Current Controller Design;69
6.7;3.6…Simulations;70
6.7.1;3.6.1 Step Changes in the Load Current;71
6.7.2;3.6.2 Step Changes in the Source Voltage;74
6.8;3.7…Conclusions;74
6.9;Acknowledgments;74
6.10;References;74
7;Part IIControl;76
8;4 Gain Scheduled H\boldinfty&!infin; Control of Wind Turbines for the Entire Operating Range;77
8.1;Abstract;77
8.2;4.1…Introduction;79
8.3;4.2…Wind Turbine Modeling;80
8.4;4.3…Objectives and Control Scheme;82
8.5;4.4…H\boldinfty&!infin; Optimal Control Background;87
8.6;4.5…Wind Turbine Control Design;89
8.6.1;4.5.1 H\boldinfty&!infin; Optimal Pitch Control;90
8.6.2;4.5.2 Anti-windup Compensation;92
8.7;4.6…Results;94
8.8;4.7…Conclusion;99
8.9;4.8…Future Research;100
8.10;Acknowledgments;100
8.11;References;100
9;5 Design of Robust Controllers for Load Reduction in Wind Turbines;102
9.1;Abstract;102
9.2;5.1…Introduction;103
9.3;5.2…General Control Concepts for Wind Turbines;105
9.3.1;5.2.1 Wind Turbine Non-Linear Model;107
9.3.2;5.2.2 Baseline Control Strategy;108
9.4;5.3…Design of Robust Controllers;111
9.4.1;5.3.1 Design of Hinfin Robust Controllers;112
9.4.1.1;5.3.1.1 Multivariable Generator Torque Hinfin Control;114
9.4.1.2;5.3.1.2 Multivariable Collective Pitch Hinfin Control;115
9.4.1.2.1;Gain Scheduled Collective Pitch Hinfin Control;119
9.4.1.3;5.3.1.3 Multivariable Individual Pitch Hinfin Control;119
9.4.2;5.3.2 Closed Loop Analysis of the Designed Robust Controllers;124
9.5;5.4…Simulation Results in GH Bladed;125
9.6;5.5…Conclusions;134
9.7;5.6…Future Work;135
9.8;Acknowledgments;136
9.9;References;136
10;6 Further Results on Modeling, Analysis, and Control Synthesis for Offshore Wind Turbine Systems;139
10.1;Abstract;139
10.2;6.1…Introduction;140
10.3;6.2…Model Description;145
10.4;6.3…Controller Design;148
10.5;6.4…Simulation Results;149
10.6;6.5…Conclusions;157
10.7;6.6…Future Work;157
10.8;A.1. 6.7…Appendix;157
10.9;References;158
11;7 A Fault Tolerant Control Approach to Sustainable Offshore Wind Turbines;160
11.1;Abstract;160
11.2;7.1…Introduction;162
11.3;7.2…Structure and Approaches to FTC Systems;163
11.4;7.3…Wind Turbine Modelling;165
11.5;7.4…Wind Turbine Aerodynamic and Control;171
11.6;7.5…Investigation of the Effects of Some Faults Scenarios;175
11.7;7.6…T-S Fuzzy PMIO-Based Sensor FTC;177
11.7.1;7.6.1 Simulation Results;183
11.8;7.7…Conclusions;188
11.9;7.8…Future Research;190
11.10;References;190
12;Part IIIMonitoring and Fault Diagnosis;194
13;8 Monitoring Ice Accumulation and Active De-icing Control of Wind Turbine Blades;195
13.1;Abstract;195
13.2;8.1…Introduction;197
13.3;8.2…Atmospheric Icing;199
13.4;8.3…Sensing and Actuation Background: Existing Methods;199
13.4.1;8.3.1 Ice Sensing;199
13.4.2;8.3.2 Thermal Actuation;200
13.5;8.4…Blade Thermodynamics;205
13.6;8.5…Direct Optical Ice Sensing;207
13.7;8.6…Distributed Localized Heating;210
13.8;8.7…Experimental Setup;211
13.9;8.8…Computational Model Validation with Experiments;215
13.10;8.9…Optimizing the Layout of Distributed Heaters;217
13.10.1;8.9.1 De-icing Performance Metric;219
13.10.2;8.9.2 De-icing Performance Comparison for Different Heater Layouts;220
13.11;8.10…Preliminary De-icing Experimental Results;224
13.11.1;8.10.1 Distributed Closed-Loop Control Experiments;225
13.11.2;8.10.2 High Intensity Pulse Amplitude Modulation;227
13.12;8.11…Conclusion;228
13.13;8.12…Future Work;230
13.14;Acknowledgments;230
13.15;References;231
14;9 Structural Health Monitoring of Wind Turbine Blades;233
14.1;Abstract;233
14.2;9.1…Introduction;235
14.3;9.2…Vibration-Based Damage Detection of Rotational Wind Turbine Blades;238
14.3.1;9.2.1 Structural Dynamic Model of Rotating Blades;238
14.3.2;9.2.2 Damage Detection Methodology: Principal Component Analysis;240
14.3.3;9.2.3 Numerical Example;242
14.3.3.1;9.2.3.1 The Wind Turbine Blade Model and Structural Dynamic Response Simulation;242
14.3.3.2;9.2.3.2 Results of Modal Analysis;243
14.3.3.3;9.2.3.3 Results of Damage Detection Based on PCA;244
14.3.4;9.2.4 Experimental Example;246
14.3.4.1;9.2.4.1 Composite Blade and Experimental Setup;246
14.3.4.2;9.2.4.2 Damage Detection Results Based on Experimental Data;247
14.4;9.3…Fatigue Damage Detection Based on High Spatial Resolution DPP-BOTDA;247
14.4.1;9.3.1 Principles of DPP-BOTDA;247
14.4.2;9.3.2 Fatigue Damage Detection Test;250
14.4.2.1;9.3.2.1 Experimental Setup;250
14.4.2.2;9.3.2.2 Summary of Test Procedure;252
14.4.3;9.3.3 Test Results and Discussions;253
14.4.3.1;9.3.3.1 Blade Failure Scenario and Mechanism;253
14.4.3.2;9.3.3.2 Damage Detection Results of the DPP-BOTDA System;255
14.5;9.4…Damage Detection under Static Loading Using PZT Sensors;257
14.5.1;9.4.1 Test Description;257
14.5.2;9.4.2 Experimental Results and Discussion;259
14.5.2.1;9.4.2.1 Results of Optical Fiber Sensors;259
14.5.2.2;9.4.2.2 Results of PZT Transformer;260
14.5.3;9.4.3 Fractal Theory-Based Damage Detection Method and Results;261
14.6;9.5…Conclusions and Future Work;263
14.7;References;264
15;10 Sensor Fault Diagnosis in Wind Turbines;268
15.1;Abstract;268
15.2;10.1…Introduction;270
15.3;10.2…Statistical Change Detection/Isolation Algorithms;271
15.3.1;10.2.1 Fault Detection;272
15.3.1.1;10.2.1.1 Example;273
15.3.2;10.2.2 Detection/Isolation Algorithm;274
15.3.3;10.2.3 Practical Issues;276
15.4;10.3…Individual Signal Monitoring;277
15.4.1;10.3.1 Excessive Noise;277
15.4.2;10.3.2 Application to Incremental Encoder Fault;279
15.4.2.1;10.3.2.1 Note;280
15.5;10.4…Fault Detection and Isolation Based on Hardware Redundancy;280
15.5.1;10.4.1 Residual Generation;280
15.6;10.5…Fault Detection and Isolation Based on Analytical Redundancy;283
15.6.1;10.5.1 Model of a Balanced Three-Phase System;284
15.6.2;10.5.2 Residual Generation;285
15.6.3;10.5.3 Fault Detection and Isolation in the Stator Voltage and Current Sensors of a Wind Driven DFIG;288
15.6.3.1;10.5.3.1 Problem Statement;288
15.6.3.2;10.5.3.2 Residual Generator and Decision System Design;290
15.6.3.3;10.5.3.3 Simulation Scenario;291
15.6.3.4;10.5.3.4 Results and Discussion;293
15.7;10.6…Conclusion;297
15.8;10.7…Future Work;298
15.9;References;298
16;11 Structural Load Analysis of Floating Wind Turbines Under Blade Pitch System Faults;301
16.1;Abstract;301
16.2;11.1…Introduction;303
16.3;11.2…Wind Turbine;308
16.3.1;11.2.1 Reference Wind Turbine;308
16.3.2;11.2.2 Regions of Operation;308
16.3.3;11.2.3 Wind Turbine Control;310
16.3.3.1;11.2.3.1 Blade Pitch Control;311
16.3.3.2;11.2.3.2 Generator Torque Control;312
16.3.4;11.2.4 Pitch System;313
16.4;11.3…Faults;314
16.4.1;11.3.1 Sensor Faults;315
16.4.1.1;11.3.1.1 Bias;315
16.4.1.2;11.3.1.2 Gain;316
16.4.1.3;11.3.1.3 Complete Failure;316
16.4.2;11.3.2 Pitch System Faults;316
16.4.2.1;11.3.2.1 Performance Degradation;316
16.4.2.2;11.3.2.2 Actuator Stuck;316
16.4.2.3;11.3.2.3 Pitch Runaway;317
16.4.2.4;11.3.2.4 Bias Error;317
16.5;11.4…Simulation Setup;317
16.5.1;11.4.1 Environmental Conditions;318
16.5.2;11.4.2 Fault Scenarios;319
16.6;11.5…Results Discussion and Analysis;322
16.6.1;11.5.1 Performance Indices;322
16.6.2;11.5.2 Blade Pitch Bias Fault;323
16.6.3;11.5.3 Blade Pitch Gain Fault;325
16.6.4;11.5.4 Actuator Performance Degradation;325
16.6.5;11.5.5 Actuator Stuck;327
16.6.6;11.5.6 Actuator Runaway;328
16.7;11.6…Conclusion;332
16.8;References;333
17;Part IVVibration Mitigation;335
18;12 Vibration Mitigation of Wind Turbine Towers with Tuned Mass Dampers;336
18.1;Abstract;336
18.2;12.1…Introduction;337
18.3;12.2…Tower Vibrations;338
18.3.1;12.2.1 Wind Loading;338
18.3.2;12.2.2 Seismic Loading;340
18.3.3;12.2.3 Soil-Structure Interaction;342
18.4;12.3…Vibration Mitigation Methods;346
18.4.1;12.3.1 Blade Pitch Control and Brake Systems;347
18.4.2;12.3.2 Dampers;347
18.4.3;12.3.3 Tuned Mass Dampers;348
18.4.3.1;12.3.3.1 Calculation of Optimal Parameters of Tuned Mass Damper;348
18.4.4;12.3.4 Tuned Liquid Dampers;349
18.4.4.1;12.3.4.1 Tuned Sloshing Dampers;349
18.4.4.2;12.3.4.2 Tuned Liquid Column Dampers;350
18.4.4.2.1;Mathematical Description;350
18.4.4.2.2;Calculation of Optimal Parameters of Tuned Liquid Column Damper;352
18.4.4.2.3;Semiactive Tuned Liquid Column Dampers;352
18.5;12.4…Reference Wind Turbine with Tuned Mass Damper;353
18.5.1;12.4.1 System Properties of the Reference Wind Turbine;354
18.5.2;12.4.2 General Simulation Parameters;354
18.5.3;12.4.3 Simulation Results;355
18.5.3.1;12.4.3.1 Onshore Reference Wind Turbine with a Tuned Mass Damper;355
18.5.3.2;12.4.3.2 Onshore Reference Wind Turbine with a Tuned Liquid Column Damper;358
18.5.3.3;12.4.3.3 Seismically Excited Onshore Reference Wind Turbine with Tuned Mass Damper;361
18.5.3.4;12.4.3.4 Onshore Reference Wind Turbine with Tuned Mass Damper Considering Soil-Structure Interaction;365
18.6;12.5…Conclusion;369
18.7;12.6…Future Work;370
18.8;Acknowledgments;370
18.9;References;370
19;13 A Semi-active Control System for Wind Turbines;373
19.1;Abstract;373
19.2;13.1…Introduction;374
19.3;13.2…Basic Idea of the Semi-active Control Strategy;375
19.4;13.3…Experimental Setup;376
19.4.1;13.3.1 Electronic Equipment and Transducers;378
19.5;13.4…Magnetorheological Dampers;381
19.6;13.5…Control Algorithms;385
19.6.1;13.5.1 Closed-Loop Eigenstructure Selection (CLES) Algorithm;390
19.6.2;13.5.2 Two Variables (2VAR) Algorithm;394
19.7;13.6…Experimental Activity and Results;395
19.7.1;13.6.1 SA Control for the Extreme Operating Gust Load Case;398
19.7.1.1;13.6.1.1 CLES Controller: Response Reduction Under the EOG Load Case;398
19.7.1.2;13.6.1.2 2VAR Controller: Response Reduction Under the EOG Load Case;398
19.7.2;13.6.2 SA Control for the Parking Load Case;400
19.7.2.1;13.6.2.1 CLES Controller: Response Reduction Under the PRK Load Case;401
19.7.2.2;13.6.2.2 2VAR Controller: Response Reduction Under the PRK Load Case;402
19.8;13.7…Conclusions;403
19.9;References;404
20;Part VTest-Bench for Research/Education;406
21;14 Wind Farm Lab Test-Bench for Research/Education on Optimum Design and Cooperative Control of Wind Turbines;407
21.1;Abstract;407
21.2;14.1…Introduction;408
21.3;14.2…System Description;408
21.3.1;14.2.1 Wind Turbine Description;408
21.3.1.1;14.2.1.1 Aerodynamics: Rotor Blades;410
21.3.1.2;14.2.1.2 Mechanics: Main Structures, Power Train, Tower, Nacelle, Gearboxes;411
21.3.1.3;14.2.1.3 Electrical Components: Generator, Grid Connection;412
21.3.1.4;14.2.1.4 Sensors: Rotor Speed, Pitch and Yaw Angles, Voltage, Currents, Torque, Power, Wind;413
21.3.1.5;14.2.1.5 Actuators: Pitch and Yaw Motors, Torque;415
21.3.1.6;14.2.1.6 WT Microprocessors: Real-Time Control for Rotor Speed, Pitch, Yaw, Torque, Power;415
21.3.2;14.2.2 Wind Farm Description;416
21.3.3;14.2.3 Supervisory Control and Data Acquisition (SCADA) System;416
21.3.4;14.2.4 Smart Micro Grid;417
21.3.5;14.2.5 Wind Source Equipment;417
21.4;14.3…Modeling of Wind Turbines;418
21.4.1;14.3.1 Power Curve of a Wind Turbine;418
21.4.2;14.3.2 Power Generation According to the Number of Blades;419
21.4.3;14.3.3 Dynamics of Rotor Speed Versus Torque, Pitch Angle and Wind Velocity Variation;420
21.5;14.4…System Identification;425
21.5.1;14.4.1 Rotor-Speed Versus Pitch-Angle Transfer Function F2(S);425
21.5.2;14.4.2 Rotor-Speed Versus Electrical-Torque Transfer Function F3(S);427
21.5.3;14.4.3 Rotor Speed Versus Wind Speed Transfer Function F1(S);429
21.6;14.5…Control System Design;429
21.6.1;14.5.1 Rotor Speed Control System;429
21.6.1.1;14.5.1.1 Control Objectives and Configuration;429
21.6.1.2;14.5.1.2 Modeling;430
21.6.1.3;14.5.1.3 Control Specifications;430
21.6.1.4;14.5.1.4 Controller Design;432
21.6.2;14.5.2 Power/Torque Control System;432
21.7;14.6…Research and Education Experiments;434
21.7.1;14.6.1 Effect of Number of Blades, Aerodynamic and Generator Efficiency;434
21.7.2;14.6.2 Rotor Speed Control with Pitch System;436
21.7.3;14.6.3 Maximum Power Point Tracking for Individual Wind Turbine;436
21.7.4;14.6.4 Estimation of the Cp/ lambda Characteristic of the 6-Blade Rotor Wind Turbine;439
21.7.5;14.6.5 Power Curve for the 6-Blade Rotor Wind Turbine;439
21.7.6;14.6.6 Wind Farm Topology Configurations and Effect on Power Efficiency;440
21.8;14.7…Conclusions;443
21.9;14.8…Future Work;443
21.10;Acknowledgments;443
21.11;References;443
22;15 Hardware in the Loop Wind Turbine Simulator for Control System Testing;445
22.1;Abstract;445
22.2;15.1…Introduction;446
22.3;15.2…HIL Test Setup;447
22.3.1;15.2.1 FAST (Wind Turbine Simulator);448
22.3.2;15.2.2 Arduino Microcontroller Board;449
22.3.3;15.2.3 Setup;450
22.4;15.3…Onshore Reference Wind Turbine;451
22.5;15.4…Wind Modeling;451
22.6;15.5…Control Strategy;452
22.6.1;15.5.1 Baseline Torque Controller;452
22.6.2;15.5.2 Chattering Torque Control;453
22.6.3;15.5.3 Pitch Control;454
22.7;15.6…HIL Results;455
22.7.1;15.6.1 Healthy;455
22.7.2;15.6.2 Faulty;455
22.8;15.7…Conclusions;458
22.9;Appendix;458
22.10;Acknowledgments;461
22.11;References;461


Ningsu Luo is Professor of Control Systems Engineering at Department of Electrical Engineering, Electronics and Automatic Control, University of Girona, Spain. He obtained his PhD in Control Engineering from Southeast University in 1990 and PhD in Physics Science from University of the Basque Country in 1994, respectively. His current research activities are focused on modeling, identification and control design for systems with complex dynamics, with application to control and monitoring of offshore floating wind turbines, mobile robotics, sustainable tillage, mechatronic systems, biomedical processes, active and semi-active control techniques for vibration mitigation in civil engineering structures and automotive suspension systems.Yolanda Vidal was born in Baleares, Spain, in 1977. She received the B.E. degree in mathematics in 1999 and the Ph.D. degree in Applied Mathematics in 2005 from the Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. Since 2002 she has been with the Department of Applied Mathematics III of the UPC where she became an associate professor in 2009. Her current research activities are focused on modeling and control design, fault detection and isolation systems with application to control and monitoring of wind turbines.Leonardo Acho was born in the State of Mexico, Mexico, in 1967. He received the B.E. degree in electronics engineering from the Technology Institute of Monterrey (ITESM), Monterrey, Mexico, in 1989; and the M.Sc. and Ph.D. degrees in electronics and automatic control, from the Technology Institute of Monterrey (ITESM), Monterrey, Mexico, and from the Research Center of Ensenada (CICESE), México, in 1992 and 2002, respectively. Since February 2008, he has been with the Department of Applied Mathematics III of the Polytechnic University of Catalonia (UPC), Spain, where he was a Visiting Professor, and became an associate professor in 2009. His current research interests include controltheory, nonlinear systems, and chaos engineering.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.