Luo | Two-Dimensional Constant and Product Polynomial Systems | Buch | 978-981-965514-4 | sack.de

Buch, Englisch, 126 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 400 g

Luo

Two-Dimensional Constant and Product Polynomial Systems


Erscheinungsjahr 2025
ISBN: 978-981-965514-4
Verlag: Springer

Buch, Englisch, 126 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 400 g

ISBN: 978-981-965514-4
Verlag: Springer


This book is a monograph about 1-dimensional flow arrays and bifurcations in constant and product polynomial systems. The 1-dimensional flows and the corresponding bifurcation dynamics are discussed. The singular hyperbolic and hyperbolic-secant flows are presented, and  the singular hyperbolic-to-hyperbolic-secant flows are discussed. The singular inflection source, sink and upper, and lower-saddle flows are presented. The corresponding appearing and switching bifurcations are presented for the hyperbolic and hyperbolic-secant networks, and singular flows networks. The corresponding theorem is presented, and the proof of theorem is given. Based on the singular flows, the corresponding hyperbolic and hyperbolic-secant flows are illustrated for a better understanding of the dynamics of constant and product polynomial systems.

Luo Two-Dimensional Constant and Product Polynomial Systems jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Constant and Product Polynomial Systems.- Proof of Theorem 1.1.- Singular flows bifurcaions and networks.


This book is a monograph about 1-dimensional flow arrays and bifurcations in constant and product polynomial systems. The 1-dimensional flows and the corresponding bifurcation dynamics are discussed. The singular hyperbolic and hyperbolic-secant flows are presented, and  the singular hyperbolic-to-hyperbolic-secant flows are discussed. The singular inflection source, sink and upper, and lower-saddle flows are presented. The corresponding appearing and switching bifurcations are presented for the hyperbolic and hyperbolic-secant networks, and singular flows networks. The corresponding theorem is presented, and the proof of theorem is given. Based on the singular flows, the corresponding hyperbolic and hyperbolic-secant flows are illustrated for a better understanding of the dynamics of constant and product polynomial systems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.