Luo / Morgül / Guo | Stability and Stabilization of Infinite Dimensional Systems with Applications | Buch | 978-1-4471-1136-8 | sack.de

Buch, Englisch, 403 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

Reihe: Communications and Control Engineering

Luo / Morgül / Guo

Stability and Stabilization of Infinite Dimensional Systems with Applications

Buch, Englisch, 403 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

Reihe: Communications and Control Engineering

ISBN: 978-1-4471-1136-8
Verlag: Springer


This book reports on recent achievements in stability and feedback stabilization of infinite systems. In particular emphasis is placed on second order partial differential equations, such as Euler-Bernoulli beam equations, which arise from vibration control of flexible robots arms and large space structures. Various control methods such as sensor feedback control and dynamic boundary control are applied to stabilize the equations.
Many new theorems and methods are included in the book. Proof procedures of existing theorems are simplified, and detailed proofs have been given to most theorems.
New results on semigroups and their stability are presented, and readers can learn several useful techniques for solving practical engineering problems. 
Until now, the recently obtained research results included in this book were unavailable in one volume. This self-contained book is an invaluable source of information for all those who are familiar with some basic theorems of functional analysis.
Luo / Morgül / Guo Stability and Stabilization of Infinite Dimensional Systems with Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Introduction.- 1.1 Overview and examples of infinite dimensional systems.- 1.2 Organization and brief summary.- 1.3 Remarks on notation.- 1.4 Notes and references.- 2 Semigroups of Linear Operators.- 2.1 Motivation and definitions.- 2.2 Properties of semigroups.- 2.3 Generation theorems for semigroups.- 2.4 Relation with the Laplace transform.- 2.5 Differentiability and analytic semigroups.- 2.6 Compact semigroups.- 2.7 Abstract Cauchy problem.- 2.8 Integrated semigroups.- 2.9 Nonlinear semigroups of contractions.- 2.10 Notes and references.- 3 Stability of C0-Semigroups.- 3.1 Spectral mapping theorems.- 3.2 Spectrum-determined growth condition.- 3.3 Weak stability and asymptotic stability.- 3.4 Exponential stability — time domain criteria.- 3.5 Exponential stability — frequency domain criteria.- 3.6 Essential spectrum and compact perturbations.- 3.7 Invariance principle for nonlinear semigroups.- 3.8 Notes and references.- 4 Static Sensor Feedback Stabilization of Euler-Bernoulli Beam Equations.- 4.1 Modeling of a rotating beam with a rigid tip body.- 4.2 Stabilization using strain or shear force feedback.- 4.3 Damped second order systems.- 4.4 Exponential stability and spectral analysis.- 4.5 Shear force feedback control of a rotating beam.- 4.6 Stability analysis of a hybrid system.- 4.7 Gain adaptive strain feedback control of Euler-Bernoulli beams.- 4.8 Notes and references.- 5 Dynamic Boundary Control of Vibration Systems Based on Passivity.- 5.1 A general framework for system passivity.- 5.2 Dynamic boundary control using positive real controllers.- 5.3 Dynamic boundary control of a rotating flexible beam.- 5.4 Stability robustness against small time delays.- 5.5 Notes and references.- 6 Other Applications.- 6.1 A General linear hyperbolic system.- 6.2 Stabilization of serially connected vibrating strings.- 6.3 Two coupled vibrating strings.- 6.4 A vibration cable with a tip mass.- 6.5 Thermoelastic system with Dirichlet — Dirichlet boundary conditions.- 6.6 Thermoelastic system with Dirichlet — Neumann boundary conditions.- 6.7 Renardy’s counter-example on spectrum-determined growth condition.- 6.8 Notes and references.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.