Lundell / Weingram | The Topology of CW Complexes | E-Book | sack.de
E-Book

E-Book, Englisch, 216 Seiten, eBook

Reihe: The university series in higher mathematics

Lundell / Weingram The Topology of CW Complexes


1969
ISBN: 978-1-4684-6254-8
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 216 Seiten, eBook

Reihe: The university series in higher mathematics

ISBN: 978-1-4684-6254-8
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Most texts on algebraic topology emphasize homological algebra, with topological considerations limited to a few propositions about the geometry of simplicial complexes. There is much to be gained however, by using the more sophisticated concept of cell (CW) complex. Even for simple computations, this concept ordinarily allows us to bypass much tedious algebra and often gives geometric insight into the homology and homotopy theory of a space. For example, the easiest way to calculate and interpret the homology of Cpn, complex projective n-space, is by means of a cellular decomposition with only n+ 1 cells. Also, by a suitable construction we can "realize" the sin gular complex of a space as a CW complex and perhaps thus give a more geometric basis for some arguments involving singular homology theory for general spaces and a more concrete basis for singular ho motopy type. As a fInal example, if we start with the category of sim plicial complexes and maps, common topological constructions such as the formation of product spaces, identifIcation spaces, and adjunction spaces lead us often into the category of CW complexes. These topics, among others, are usually not treated thoroughly in a standard text, and the interested student must fInd them scattered through the literature. This book is a study of CW complexes. It is intended to supplement and be used concurrently with a standard text on algebraic topology.

Lundell / Weingram The Topology of CW Complexes jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


0. Preliminaries.- I. Combinatorial Cell Complexes.- 1. Definitions.- 2. Examples.- 3. Carrier theory.- 4. Functions.- 5. Product complexes.- 6. Equivalence relations and quotients.- 7. Adjunction complexes.- II. CW Complexes.- 1. Definitions.- 2. Alternative descriptions of CW complexes.- 3. Remarks on the general topology of CW complexes.- 4. Paracompactness.- 5. Products, quotients, and adjunctions.- 6. Homotopy and local properties.- 7. The homotopy extension theorem.- 8. The cellular approximation theorem.- 9. Aspherical carrier theorem.- III. Regular and Semisimplicial CW Complexes.- 1. Regular and normal CW complexes.- 2. Regular CW complexes and invariance of domain.- 3. Semisimplicial complexes.- 4. The realization of semisimplicial complexes.- 5. Semisimplicial constructions.- 6. Simplicial subdivision of semisimplicial complexes.- 7. Barycentric subdivision of semisimplicial complexes.- 8. Regulated semisimplicial complexes.- 9. The functor *.- IV. Homotopy Type of CW Complexes.- 1. Homotopy equivalence and deformation retraction.- 2. Homotopy equivalence of adjunction spaces.- 3. Whitehead’s theorems.- 4. Simplicial complexes with the metric topology.- 5. Equi-local convexity.- 6. Countable CW complexes.- 7. Finite CW complexes.- V. The Singular Homology of CW Complexes.- 1. Excision in the CW category.- 2. Cellular homology.- 3. Orientation, incidence, and degree.- 4. Regular CW complexes and proper maps.- 5. Quotient complexes.- 6. Product and adjunction complexes.- 7. Semisimplicial complexes.- 8. Realizing cellular maps.- Appendix I. Paracompact Spaces.- Appendix II. Extension Spaces and Neighborhood Retracts.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.