• Neu
Lu | Artificial Intelligence and Robotics | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 352 Seiten

Reihe: Artificial Intelligence (R0)

Lu Artificial Intelligence and Robotics

10th International Symposium, ISAIR 2025, Nantong, China, August 24–26, 2025, Revised Selected Papers, Part I
Erscheinungsjahr 2026
ISBN: 978-981-954821-7
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

10th International Symposium, ISAIR 2025, Nantong, China, August 24–26, 2025, Revised Selected Papers, Part I

E-Book, Englisch, 352 Seiten

Reihe: Artificial Intelligence (R0)

ISBN: 978-981-954821-7
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the refereed proceedings of the 10th International Symposium Conference on Artificial Intelligence and Robotics, ISAIR 2025, in Nantong, China, in August 24–26, 2025.

The 45 full papers presented in this volume were carefully reviewed and selected from 102 submissions. They focus on all aspects of artificial intelligence, robotics and Internet of Things.

Lu Artificial Intelligence and Robotics jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- Movie Poster Design Based on Composite Template Learning.
.- Beat tracking algorithm based on multi-scale feature fusion and attention mechanism.
.- A Benchmark for Document Understanding of LLMs in the Field of Electric Power.
.- Small Object Detection Using  DM-YOLOv10 in Complex Scenes.
.- Improved CycleGAN for Mine Low-Light Image Enhancement.
.- AI Powered Energy and Power Electronic Data Storage and Forensics based on Blockchain.
.- Uncertainty-aware Semi-supervised Human Pose Estimation.
.- Clear Boundary LoRAS: A hybrid re-sampling strategy for imbalanced learning.
.- TSVITFusion: Infrared and Visible Image Fusion via a Two-Stage Vision Transformer Framework.
.- AeroYOLOv9 for Airport Surface Object Detection via the ASMOD Dataset.
.- DMFSO-YOLO: A Dynamic Multi-scale Fusion and Speed-Optimized Network for Steel Surface Defect Detection.
.- Multi Action Unit Feature Fusion Network for Micro-Expression Recognition.
.- Research on energy consumption prediction method of pure electric tugboat based on machine learning.
.- A review of object detection techniques for novel power systems.
.- RUMNet: Reconstructed Attention and Unified Multimodal Network for Medical Image Segmentation.
.- A review of multi-source and multi-modal anomaly data detection for new power systems.
.- HiResSiamNet: Hierarchical Residual Siamese Networks for Source Camera Device Linking on Small-sized Images.
.- Research on Music Emotion Recognition Based on Multi-scale Attention and Cross-modal Contrastive Learning.
.- A Study of Self-Trained Unsupervised Semantic Segmentation Based on Dual-Branch.
.- Research on Controllable Music Generation Algorithm Based on Multi-Branch Fusion.
.- Melody Extraction Based on Dual-Branch Feature Fusion and Spatial Direction Attention.
.- Generating Video with Conditional Control Diffusion Model.
.- QMB: A Quaternion-based Modality Balancing Framework for Multimodal Multilabel Emotion Recognition.
.- Lightweighted MX-YOLO Model for Traffic Object Detection.
.- MFW-RTDETR: Lightweighted Model Using MobileNetV4 and LAMP for Aerial Object Detection.
.- T-Splines local refinement based on Half-edge Data Structure.
.- Development of a Multimodal Dialogue Robot for Multi-Speakers.
.- Consonant-Enhanced Hearing Aid for Speech Intelligibility in Older Adults with Mild Hearing Loss – A Listening Evaluation of Consonant Enhancement.
.- Phoneme Category Classification for Consonant-Enhanced Hearing Aid System.
.- Geospatial Target Recognition Using Feature-Enhanced YOLOv11.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.