Lorenz | Reinforcement Learning | E-Book | sack.de
E-Book

E-Book, Deutsch, 204 Seiten, eBook

Lorenz Reinforcement Learning

Aktuelle Ansätze verstehen – mit Beispielen in Java und Greenfoot
2. Auflage 2024
ISBN: 978-3-662-68311-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Aktuelle Ansätze verstehen – mit Beispielen in Java und Greenfoot

E-Book, Deutsch, 204 Seiten, eBook

ISBN: 978-3-662-68311-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



In uralten Spielen wie Schach oder Go können sich die brillantesten Spieler verbessern, indem sie die von einer Maschine produzierten Strategien studieren. Robotische Systeme üben ihre Bewegungen selbst. In Arcade Games erreichen lernfähige Agenten innerhalb weniger Stunden übermenschliches Niveau. Wie funktionieren diese spektakulären Algorithmen des bestärkenden Lernens? Mit gut verständlichen Erklärungen und übersichtlichen Beispielen in Java und Greenfoot können Sie sich die Prinzipien des bestärkenden Lernens aneignen und in eigenen intelligenten Agenten anwenden. Greenfoot (M.Kölling, King’s College London) und das Hamster-Modell (D.Bohles, Universität Oldenburg) sind einfache, aber auch mächtige didaktische Werkzeuge, die entwickelt wurden, um Grundkonzepte der Programmierung zu vermitteln. Wir werden Figuren wie den Java-Hamster zu lernfähigen Agenten machen, die eigenständig ihre Umgebung erkunden. Die zweite Auflage enthält neue Themen wie "Genetische Algorithmen" und "Künstliche Neugier" sowie Erklärungen zu aktuellen Algorithmen wie A3C und PPO  (wurde u.a. für das Finetuning von ChatGPT verwendet), außerdem Korrekturen und Überarbeitungen.
Lorenz Reinforcement Learning jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Bestärkendes Lernen als Teilgebiet des Maschinellen Lernens.- Grundbegriffe des Bestärkenden Lernens.- Optimale Entscheidungen in einem bekannten Umweltsystem.- Entscheiden und Lernen in einem unbekannten Umweltsystem.- Neuronale Netze als Schätzer für Zustandsbewertungen und Aktionspräferenzen.- Werden digitale Agenten bald intelligenter als Menschen sein?.- Leitbilder in der KI.


Uwe Lorenz war nach seinem Studium der Informatik und Philosophie mit Schwerpunkt Künstliche Intelligenz und Maschinelles Lernen an der Humboldt-Universität in Berlin und einigen Jahren als Projektingenieur für 10 Jahr als Gymnasiallehrer für Informatik und Mathematik tätig. Seit seinem Erstkontakt mit Computern Ende der 80er Jahre hat ihn das Thema Künstliche Intelligenz nicht mehr losgelassen. Derzeit arbeitet er als wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Didaktik der Informatik an der Freien Universität Berlin in einem Projekt zur Thematik "Verantwortungsvolle Künstliche Intelligenz in der Lehramtsausbildung".



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.