E-Book, Englisch, 284 Seiten, eBook
Lopez MATLAB Optimization Techniques
1. Auflage 2014
ISBN: 978-1-4842-0292-0
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 284 Seiten, eBook
ISBN: 978-1-4842-0292-0
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Popular/general
Autoren/Hrsg.
Weitere Infos & Material
1;Contents at a Glance;3
2;Contents;279
3;About the Author;283
4;Chapter 1: Introducing MATLAB and the MATLAB Working Environment;4
4.1;1.1 Introduction;4
4.1.1;1.1.1 Developing Algorithms and Applications;5
4.1.2;1.1.2 Data Access and Analysis;8
4.1.3;1.1.3 Data Visualization;9
4.1.4;1.1.4 Numerical Calculation;12
4.1.5;1.1.5 Publication of Results and Distribution of Applications;13
4.2;1.2 The MATLAB Working Environment;14
4.3;1.3 Help in MATLAB;19
5;Chapter 2: MATLAB Programming;25
5.1;2.1 MATLAB Programming;25
5.1.1;2.1.1 The Text Editor;25
5.1.2;2.1.2 Scripts;28
5.1.3;2.1.3 Functions and M-files. Eval and Feval;31
5.1.4;2.1.4 Local and Global Variables;34
5.1.5;2.1.5 Data Types;36
5.1.6;2.1.6 Flow Control: FOR, WHILE and IF ELSEIF Loops;37
5.1.6.1;FOR Loops;37
5.1.6.2;WHILE Loops;38
5.1.6.3;IF ELSEIF ELSE END Loops;39
5.1.6.4;SWITCH and CASE;41
5.1.6.5;CONTINUE;42
5.1.6.6;BREAK;42
5.1.6.7;TRY... CATCH;44
5.1.6.8;RETURN;44
5.1.7;2.1.7 Subfunctions;45
5.1.8;2.1.8 Commands in M-files;46
5.1.9;2.1.9 Functions Relating to Arrays of Cells;47
5.1.10;2.1.10 Multidimensional Array Functions;50
6;Chapter 3: Basic MATLAB Functions for Linear and Non-Linear Optimization;54
6.1;3.1 Solutions of Equations and Systems of Equations;54
6.2;3.2 Working with Polynomials;60
7;Chapter 4: Optimization by Numerical Methods: Solving Equations;68
7.1;4.1 Non-Linear Equations;68
7.1.1;4.1.1 The Fixed Point Method for Solving x = g(x);68
7.1.2;4.1.2 Newton’s Method for Solving the Equation f(x) = 0;71
7.1.3;4.1.3 Schröder’s Method for Solving the Equation f(x) = 0;73
7.2;4.2 Systems of Non-Linear Equations;73
7.2.1;4.2.1 The Seidel Method;74
7.2.2;4.2.2 The Newton-Raphson Method;74
8;Chapter 5: Optimization Using Symbolic Computation;82
8.1;5.1 Symbolic Equations and Systems of Equations;82
9;Chapter 6: Optimization Techniques Via The Optimization Toolbox;86
9.1;6.1 The Optimization Toolbox;86
9.1.1;6.1.1 Standard Algorithms;86
9.1.2;6.1.2 Large Scale Algorithms;86
9.2;6.2 Minimization Algorithms;87
9.2.1;6.2.1 Multiobjective Problems;87
9.2.2;6.2.2 Non-Linear Scalar Minimization With Boundary Conditions;90
9.2.3;6.2.3 Non-Linear Minimization with Restrictions;90
9.2.4;6.2.4 Minimax Optimization: fminimax and fminuc;92
9.2.5;6.2.5 Minimax Optimization;93
9.2.6;6.2.6 Minimum Optimization: fminsearch and fminuc;94
9.2.7;6.2.7 Semi-Infinitely Constrained Minimization;94
9.2.8;6.2.8 Linear Programming;95
9.2.9;6.2.9 Quadratic programming;97
9.3;6.3 Equation Solving Algorithms;99
9.3.1;6.3.1 Solving Equations and Systems of Equations;99
9.4;6.4 Fitting Curves by Least Squares;101
9.4.1;6.4.1 Conditional Least Squares Problems;101
9.4.2;6.4.2 Non- Linear Least Squares Problems;101
9.4.3;6.4.3 Linear Non- Negative Least Squares Problems;102
10;Chapter 7: Differentiation in one and Several Variables. Applications to Optimization;110
10.1;7.1 Derivatives;110
10.2;7.2 Par tial Derivatives;112
10.3;7.3 Applications of Derivatives. Tangents, Asymptotes, Extreme Points and Turning Points;114
10.4;7.4 Differentiation of Functions of Several Variables;118
10.5;7.5 Maxima and Minima of Functions of Several Variables;123
10.6;7.6 Conditional Minima and Maxima. The Method of “Lagrange Multipliers”;131
10.7;7.7 Vector Differential Calculus;134
10.8;7.8 The Composite Function Theorem;135
10.9;7.9 The Implicit Function Theorem;136
10.10;7.10 The Inverse Function Theorem;137
10.11;7.11 The Change of Variables Theorem;139
10.12;7.12 Series Expansions in Several Variables;139
10.13;7.13 Vector Fields. Curl, Divergence and the Laplacian;140
10.14;Spherical, Cylindrical and Rectangular Coordinates;142
11;Chapter 8: Optimization of Functions of Complex Variables;165
11.1;8.1 Complex Numbers;165
11.2;8.2 General Functions of a Complex Variable;166
11.2.1;8.2.1 Trigonometric Functions of a Complex Variable;166
11.2.2;8.2.2 Hyperbolic Functions of a Complex Variable;167
11.2.3;8.2.3 Exponential and Logarithmic Functions of a Complex Variable;168
11.3;8.3 Specific Functions of a Complex Variable;169
11.4;8.4 Basic Functions with Complex Vector Arguments;170
11.5;8.5 Basic Functions with Complex Matrix Arguments;175
11.6;8.6 General Functions with Complex Matrix Arguments;181
11.6.1;8.6.1 Trigonometric Functions of a Complex Matrix Variable;181
11.6.2;8.6.2 Hyperbolic Functions of a Complex Matrix Variable;186
11.6.3;8.6.3 Exponential and Logarithmic Functions of a Complex Matrix Variable;190
11.6.4;8.6.4 Specific Functions of a Complex Matrix Variable;192
11.7;8.7 Matrix Operations with Real and Complex Variables;195
12;Chapter 9: Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization;216
12.1;9.1 Expanding, Simplifying and Factoring Algebraic Expressions;216
12.2;9.2 Polynomials;219
12.3;9.3 Polynomial Interpolation;223
12.4;9.4 Solving Equations and Systems of Equations;231
12.4.1;9.4.1 General Methods;231
12.4.2;9.4.2 The Biconjugate Gradient Method;233
12.4.3;9.4.3 The Conjugate Gradients Method;236
12.4.4;9.4.4 The Residual Method;238
12.4.5;9.4.5 The Symmetric and Non-Negative Least Squares Method;241
12.5;9.5 Solving Linear Systems of Equations;243