E-Book, Englisch, Band 280, 266 Seiten, eBook
By Means of Data Science and Optimal Learning
E-Book, Englisch, Band 280, 266 Seiten, eBook
Reihe: Springer Series in Materials Science
ISBN: 978-3-319-99465-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
in situ
spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Part 1: Learning from Data in Material Science.- Designing Novel Multifunctional Materials via Inverse Optimization Techniques.- Quantifying Uncertainties in First Principles Alloy Thermodynamics.- Forward Modeling of Electron Scattering Modalities for Microstructure Quantification.- The Potential of Network Analysis Strategies to HEDM Data: Classification of Microstructures and Prediction of Incipient Failure.- Part 2: Data and Inference.- Challenges of Diagram extraction and Understanding.- Integration of Computational Reasoning, Machine Learning, and Crowdsourcing for Accelerating Materials Discovery.- Computational Creativity for Materials Science.- Optimal Experimental Design Based on Uncertainty Quantification.- Part 3: High-Throughput Calculations and Experiments Functionality-Driven Design and Discovery.- The Use of Proxies and Data for Guiding Materials Synthesis: Examples of Phosphors and Thermoelectrics.- Big Data from Experiments.- Data-Driven Approaches to Combinatorial Materials Science.- Invariant Representations for Robust Materials Prediction.- Part 4: Data Optimization/Challenges in Analysis of Data for Facilities.- The MGI Data Infrastructure.- Is Rigorous Automated Materials Design and Discovery Possible?.- Improve your Monte Carlo: Learn a Control Variate and Correct it with Stacking.- X-ray Free Electron Laser Studies of Shock-Driven Deformation and Phase Transitions.- Coherent Diffraction Imaging Techniques at 3rd and 4th Generation Light Sources.- 3D Data Challenges from X-ray Synchrotron Tomography.- Part 5: Interference/HPC/Software Integration.- Optimal Bayesian Experimental Design: Formulations and New Computational Strategies.- Optimal Bayesian Inference with Missing Data.- Applying an Experimental Design Loop to Shape Memory Alloys.- Big Data Need Big Theory Too.- Combining Experiments, Simulation and Machine Learning in a Single Materials Platform - A Materials Informatics Approach.- Rethinking the HPC Programming Environment.