Longo / Seifert / Lapuschkin | Explainable Artificial Intelligence | Buch | 978-3-031-63796-4 | sack.de

Buch, Englisch, Band 2154, 514 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 797 g

Reihe: Communications in Computer and Information Science

Longo / Seifert / Lapuschkin

Explainable Artificial Intelligence

Second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part II
2024
ISBN: 978-3-031-63796-4
Verlag: Springer Nature Switzerland

Second World Conference, xAI 2024, Valletta, Malta, July 17-19, 2024, Proceedings, Part II

Buch, Englisch, Band 2154, 514 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 797 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-63796-4
Verlag: Springer Nature Switzerland


This four-volume set constitutes the refereed proceedings of the Second World Conference on Explainable Artificial Intelligence, xAI 2024, held in Valletta, Malta, during July 17-19, 2024. 

The 95 full papers presented were carefully reviewed and selected from 204 submissions. The conference papers are organized in topical sections on:

Part I - intrinsically interpretable XAI and concept-based global explainability; generative explainable AI and verifiability; notion, metrics, evaluation and benchmarking for XAI.

Part II - XAI for graphs and computer vision; logic, reasoning, and rule-based explainable AI; model-agnostic and statistical methods for eXplainable AI.

Part III - counterfactual explanations and causality for eXplainable AI; fairness, trust, privacy, security, accountability and actionability in eXplainable AI.

Part IV - explainable AI in healthcare and computational neuroscience; explainable AI for improved human-computer interaction and software engineering for explainability; applications of explainable artificial intelligence.

Longo / Seifert / Lapuschkin Explainable Artificial Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- XAI for graphs and Computer vision.
.- Model-Agnostic Knowledge Graph Embedding Explanations for Recommender Systems.
.- Graph-Based Interface for Explanations by Examples in Recommender Systems: A User Study.
.- Explainable AI for Mixed Data Clustering.
.- Explaining graph classifiers by unsupervised node relevance attribution.
.- Explaining Clustering of Ecological Momentary Assessment through Temporal and Feature-based Attention.
.- Graph Edits for Counterfactual Explanations: A comparative study.
.- Model guidance via explanations turns image classifiers into segmentation models.
.- Understanding the Dependence of Perception Model Competency on Regions in an Image.
.- A Guided Tour of Post-hoc XAI Techniques in Image Segmentation.
.- Explainable Emotion Decoding for Human and Computer Vision.
.- Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification.
.- Logic, reasoning, and rule-based explainable AI.
.- Template Decision Diagrams for Meta Control and Explainability.
.- A Logic of Weighted Reasons for Explainable Inference in AI.
.- On Explaining and Reasoning about Fiber Optical Link Problems.
.- Construction of artificial most representative trees by minimizing tree-based distance measures.
.- Decision Predicate Graphs: Enhancing Interpretability in Tree Ensembles.
.- Model-agnostic and statistical methods for eXplainable AI.
.- Observation-specific explanations through scattered data approximation.
.- CNN-based explanation ensembling for dataset, representation and explanations evaluation.
.- Local List-wise Explanations of LambdaMART.
.- Sparseness-Optimized Feature Importance.
.- Stabilizing Estimates of Shapley Values with Control Variates.
.- A Guide to Feature Importance Methods for Scientific Inference.
.- Interpretable Machine Learning for TabPFN.
.- Statistics and explainability: a fruitful alliance.
.- How Much Can Stratification Improve the Approximation of Shapley Values?.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.