Long / Zeng | Beginning Deep Learning with Tensorflow | Buch | 978-1-4842-7914-4 | sack.de

Buch, Englisch, 713 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1101 g

Long / Zeng

Beginning Deep Learning with Tensorflow

Work with Keras, Mnist Data Sets, and Advanced Neural Networks
1. Auflage 2022
ISBN: 978-1-4842-7914-4
Verlag: Apress

Work with Keras, Mnist Data Sets, and Advanced Neural Networks

Buch, Englisch, 713 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1101 g

ISBN: 978-1-4842-7914-4
Verlag: Apress


Incorporate deep learning into your development projects through hands-on coding and the latest versions of deep learning software, such as TensorFlow 2 and Keras. The materials used in this book are based on years of successful online education experience and feedback from thousands of online learners. 
You’ll start with an introduction to AI, where you’ll learn the history of neural networks and what sets deep learning apart from other varieties of machine learning. Discovery the variety of deep learning frameworks and set-up a deep learning development environment. Next, you’ll jump into simple classification programs for hand-writing analysis. Once you’ve tackled the basics of deep learning, you move on to TensorFlow 2 specifically. Find out what exactly a Tensor is and how to work with MNIST datasets. Finally, you’ll get into the heavy lifting of programming neural networks  and working with a wide variety of neural network types such as GANs andRNNs.  
Deep Learning is a new area of Machine Learning research widely used in popular applications, such as voice assistant and self-driving cars. Work through the hands-on material in this book and become a TensorFlow programmer!      

What You'll Learn
  • Develop using deep learning algorithms
  • Build deep learning models using TensorFlow 2
  • Create classification systems and other, practical deep learning applications

Who This Book Is ForStudents, programmers, and researchers with no experience in deep learning who want to build up their basic skillsets. Experienced machine learning programmers and engineers might also find value in updating their skills.
Long / Zeng Beginning Deep Learning with Tensorflow jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Chapter 1: Introduction to Artificial Intelligence.- Chapter 2. Regression.- Chapter 3. Classification.- Chapter 4. Basic Tensorflow.- Chapter 5. Advanced Tensorflow.- Chapter 6. Neural Network.- Chapter 7. Backward Propagation Algorithm.- Chapter 8. Keras Advanced API.- Chapter 9. Overfitting.- Chapter 10. Convolutional Neural Networks.- Chapter 11. Recurrent Neural Network.- Chapter 12. Autoencoder.- Chapter 13. Generative Adversarial Network (GAN).- Chapter 14. Reinforcement Learning.- Chapter 15. Custom Dataset.


Liangqu Long is a well-known deep learning educator and engineer in China. He is a successfully published author in the topic area with years of experience in teaching machine learning concepts. His two online video tutorial courses “Deep Learning with PyTorch” and “Deep Learning with TensorFlow 2” have received massive positive comments and allowed him to refine his deep learning teaching methods.    
Xiangming Zeng is an experienced data scientist and machine learning practitioner. He has over ten years of experience using machine learning and deep learning models to solve real world problems in both academia and professionally. Xiangming is familiar with deep learning fundamentals and mainstream machine learning libraries such as Tensorflow and scikit-learn.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.