Buch, Englisch, 345 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 557 g
ISBN: 978-3-031-27097-0
Verlag: Birkhäuser
The goal of this monograph is to answer the question, is it possible to solve the dynamics problem inside the configuration space instead of the phase space? By introducing a proper class of vector field – the Cartesian vector field – given in a Riemann space, the authors explore the connections between the first order ordinary differential equations (ODEs) associated to the Cartesian vector field in the configuration space of a given mechanical system and its dynamics. The result is a new perspective for studying the dynamics of mechanical systems, which allows the authors to present new cases of integrability for the Suslov and Veselova problem; establish the relation between the Cartesian vector field and the integrability of the geodesic flow in a special class of homogeneous surfaces; discuss the importance of the Nambu bracket in the study of first order ODEs; and offer a solution of the inverse problem in celestial mechanics.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematische Analysis
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
Weitere Infos & Material
Chapter. 1. Dynamics via the first order ordinary differential equations.- Chapter. 2. Constrained Cartesian vector fields.- Chapter. 3. Three dimensional constrained Cartesian vector fields.- Chapter. 4. Cartesian-Synge-Cinsov vector field.- Chapter. 5. Generalized Cartesian-Nambu vector fields.- Chapter. 6. Integrability of generalized Cartesian-Nambu vector fields.




