Liu | Web Data Mining | E-Book | sack.de
E-Book

E-Book, Englisch, 552 Seiten, eBook

Reihe: Data-Centric Systems and Applications

Liu Web Data Mining

Exploring Hyperlinks, Contents, and Usage Data
1. Auflage 2007
ISBN: 978-3-540-37882-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Exploring Hyperlinks, Contents, and Usage Data

E-Book, Englisch, 552 Seiten, eBook

Reihe: Data-Centric Systems and Applications

ISBN: 978-3-540-37882-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The rapid growth of the Web in the last decade makes it the largest p- licly accessible data source in the world. Web mining aims to discover u- ful information or knowledge from Web hyperlinks, page contents, and - age logs. Based on the primary kinds of data used in the mining process, Web mining tasks can be categorized into three main types: Web structure mining, Web content mining and Web usage mining. Web structure m- ing discovers knowledge from hyperlinks, which represent the structure of the Web. Web content mining extracts useful information/knowledge from Web page contents. Web usage mining mines user access patterns from usage logs, which record clicks made by every user. The goal of this book is to present these tasks, and their core mining - gorithms. The book is intended to be a text with a comprehensive cov- age, and yet, for each topic, sufficient details are given so that readers can gain a reasonably complete knowledge of its algorithms or techniques without referring to any external materials. Four of the chapters, structured data extraction, information integration, opinion mining, and Web usage mining, make this book unique. These topics are not covered by existing books, but yet they are essential to Web data mining. Traditional Web mining topics such as search, crawling and resource discovery, and link analysis are also covered in detail in this book.

Liu Web Data Mining jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Data Mining Foundations.- Association Rules and Sequential Patterns.- Supervised Learning.- Unsupervised Learning.- Partially Supervised Learning.- Web Mining.- Information Retrieval and Web Search.- Link Analysis.- Web Crawling.- Structured Data Extraction: Wrapper Generation.- Information Integration.- Opinion Mining.- Web Usage Mining.


Bing Liu is an associate professor in Computer Science at the University of Illinois at Chicago (UIC). He received his PhD degree in Artificial Intelligence from the University of Edinburgh. Before joining UIC in 2002, he was with the National University of Singapore. His research interests include data mining, Web mining, text mining, and machine learning. He has published extensively in these areas in leading conferences and journals. He served (or serves) as a vice chair, deputy vice chair or program committee member of many conferences, including WWW, KDD, ICML, VLDB, ICDE, AAAI, SDM, CIKM and ICDM.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.