Liu | The Plant Cytoskeleton | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 2, 331 Seiten

Reihe: Advances in Plant Biology

Liu The Plant Cytoskeleton


2011
ISBN: 978-1-4419-0987-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 2, 331 Seiten

Reihe: Advances in Plant Biology

ISBN: 978-1-4419-0987-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Plant cells house highly dynamic cytoskeletal networks of microtubules and actin microfilaments.  They constantly undergo remodeling to fulfill their roles in supporting cell division, enlargement, and differentiation.  Following early studies on structural aspects of the networks, recent breakthroughs have connected them with more and more intracellular events essential for plant growth and development.  Advanced technologies in cell biology (live-cell imaging in particular), molecular genetics, genomics, and proteomics have revolutionized this field of study.  Stories summarized in this book may inspire enthusiastic scientists to pursue new directions toward understanding functions of the plant cytoskeleton.  The Plant Cytoskeleton is divided into three sections: 1) Molecular Basis of the Plant Cytoskeleton; 2) Cytoskeletal Reorganization in Plant Cell Division; and 3) The Cytoskeleton in Plant Growth and Development.  This book is aimed at serving as a resource for anyone who wishes to learn about the plant cytoskeleton beyond ordinary textbooks. 

Bo Liu is professor in the Department of Plant Biology at the University of California in Davis, California. He received his B.S. degree in cell biology and genetics and M.S. degree in cell biology from Peking University in Beijing, China, and Ph.D. degree in botany from the University of Georgia in Athens, Georgia. Research in his laboratory is focused on studying the cytoskeletal basis of intracellular motility in flowering plants and filamentous fungi.

Liu The Plant Cytoskeleton jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Contributors;10
4;Part I Molecular Basis of the Plant Cytoskeleton;14
4.1;Chapter 1: Actin Functions in the Cytoplasmic and Nuclear Compartments;15
4.1.1;1.1 Introduction;15
4.1.2;1.2 Evolutionary Origin and Phylogeny of Plant Actins and Actin Binding Proteins;16
4.1.3;1.3 The Actin Cytoskeleton in Plant Cell Polarity and Elongation;19
4.1.3.1;1.3.1 Genetic Studies Demonstrate the Role of Actin and ABP Variants in Cell Polarity and Elongation;19
4.1.3.2;1.3.2 F-Actin Filament Dynamics and Cell Elongation;22
4.1.3.3;1.3.3 Protein Variant Differences vs. Gene Regulation;25
4.1.3.4;1.3.4 Protein–Protein Interactions Among Actin and ABP Families;28
4.1.3.5;1.3.5 Organelle Streaming and Vesicle Movement Within a Relatively Stationary Cytoplasm;29
4.1.4;1.4 Nuclear Actin;31
4.1.4.1;1.4.1 History of Nuclear Actin Research;31
4.1.4.2;1.4.2 Plant Actin and ABPs in the Nucleus;31
4.1.4.3;1.4.3 Molecular Genetic Functions of Nuclear Actin;33
4.1.4.4;1.4.4 Epigenetic Functions for Actin in the Assembly of Chromatin Remodeling and Modifying Complexes;33
4.1.5;1.5 Actins and ADFs in Signal Transduction;35
4.1.6;References;37
4.2;Chapter 2: Plant Myosins;45
4.2.1;2.1 Introduction;45
4.2.2;2.2 Domain Structures of Plant Myosin Heavy Chains;47
4.2.3;2.3 The Motor Domain;48
4.2.4;2.4 The Directional Determinant of Organelle Transport by the Polarity of Acitn Filaments;49
4.2.5;2.5 The Neck Domain;50
4.2.6;2.6 a-Helical Coiled-Coil Domain in the Tail Region;51
4.2.7;2.7 Processive Movement of Higher Pant Myosin XI;53
4.2.8;2.8 Regulation of Higher Plant Myosin XI Through CaM Light Chain;54
4.2.9;2.9 Regulation of Cytoplasmic Streaming or Organelle Transports in Pollen Tubes;55
4.2.10;2.10 Globular Tail Domain;55
4.2.11;2.11 The Mechanism for Cargo Recognition by Higher Plant Myosin XI;56
4.2.12;2.12 Functional Inter-Domain Communication Between a-Helical Coiled-Coil and Globular Tail Domains;58
4.2.13;2.13 Direct Binding of Chara Myosin XI to Phospholipid Vesicles;59
4.2.14;2.14 Cytoplasmic Streaming in Characean Cells;59
4.2.15;2.15 The Regulation of Cytoplasmic Streaming in the Characean Cell;60
4.2.16;2.16 Cytoplasmic Streaming in Higher Plant Cells;61
4.2.17;2.17 Conclusion;62
4.2.18;References;63
4.3;Chapter 3: Actin-Binding Proteins and Actin Dynamics in Plant Cells;69
4.3.1;3.1 Introduction;70
4.3.2;3.2 Profilin;71
4.3.3;3.3 Arp2/3 Complex and Its Regulatory WAVE Complex;73
4.3.4;3.4 Formin;75
4.3.5;3.5 Capping Protein (CP);77
4.3.6;3.6 Actin Depolymerizing Factors (ADFs);78
4.3.7;3.7 Villin/Gelsolin/Fragmin Superfamily Proteins;80
4.3.8;3.8 Conclusions;83
4.3.9;References;84
4.4;Chapter 4: Microtubule Nucleation and Organization in Plant Cells;93
4.4.1;4.1 Introduction;93
4.4.2;4.2 Microtubule Nucleation Sites in Land Plant Cells;93
4.4.2.1;4.2.1 Patterns of Microtubules in the Cell Cycle of Land Plants;93
4.4.2.2;4.2.2 Microtubule Nucleation in Interphase Cells;95
4.4.2.2.1;4.2.2.1 Nucleation Sites for the Cortical Array;95
4.4.2.2.2;4.2.2.2 Nucleation Sites for the Radial Array;96
4.4.2.3;4.2.3 Microtubule Nucleation for Preprophase Band Development;96
4.4.2.4;4.2.4 Microtubule Nucleation in Mitosis;97
4.4.2.4.1;4.2.4.1 Three Pathways in Metazoan Cells;97
4.4.2.4.2;4.2.4.2 Origin of Spindle Microtubules at Prophase;98
4.4.2.4.3;4.2.4.3 Microtubule Nucleation Sites During Spindle Development;98
4.4.2.5;4.2.5 Microtubule Nucleation in Cytokinesis;99
4.4.3;4.3 Proteins Involved in Microtubule Nucleation;99
4.4.3.1;4.3.1 g-Tubulin Complexes;99
4.4.3.2;4.3.2 Other Centrosomal Proteins;100
4.4.3.3;4.3.3 Is There g-Tubulin-Independent Nucleation?;101
4.4.4;4.4 Role of Microtubule Nucleation in Microtubule Organization;101
4.4.5;4.5 Concluding Remarks;102
4.4.6;References;103
4.5;Chapter 5: Microtubule Plus End-Tracking Proteins and Their Activities in Plants;107
4.5.1;5.1 Introduction;107
4.5.2;5.2 Microtubule Structure and Dynamics;109
4.5.3;5.3 Holding onto a Moving Target: How +TIPs Find, Recognize and Maintain Contact with the Plus End;110
4.5.4;5.4 +TIPs and Their Role in the Cell;112
4.5.5;5.5 +TIPs in Plants;112
4.5.6;5.6 EB1, the Quintessential +TIP;114
4.5.7;5.7 Structural Conservation Amongst EB1 Family Members;114
4.5.8;5.8 EB1 Localization Patterns in Plant Cells;115
4.5.9;5.9 EB1 and the Regulation of Microtubule Dynamics;116
4.5.10;5.10 EB1 and +TIP Complex Assembly;117
4.5.11;5.11 Proteins Bearing TOG Domains: MOR1 and CLASP;118
4.5.12;5.12 Plant Kinesins and ATK5;119
4.5.13;5.13 Actin-Related Proteins;121
4.5.14;5.14 Plant-Specific +TIPs;121
4.5.15;5.15 Conclusions and Unanswered Questions;122
4.5.16;References;123
4.6;Chapter 6: Microtubule Motor Proteins in the Eukaryotic Green Lineage: Functions and Regulation;130
4.6.1;6.1 Introduction;130
4.6.2;6.2 Kinesins;131
4.6.3;6.3 Kinesin Types and Evolutionary Relationships;131
4.6.4;6.4 Domains in Kinesins;138
4.6.5;6.5 Known Functions of Kinesins in Plants;140
4.6.6;6.6 Structure and Regulation of Kinesins;145
4.6.7;6.7 Concluding Remarks;148
4.6.8;References;148
5;Part II Cytoskeletal Reorganization in Plant Cell Division;153
5.1;Chapter 7: The Preprophase Band and Division Site Determination in Land Plants;154
5.1.1;7.1 Introduction;154
5.1.1.1;7.1.1 Focus of this Chapter;154
5.1.1.2;7.1.2 What is a PPB?;155
5.1.1.3;7.1.3 To Have or Not to Have a PPB;156
5.1.1.4;7.1.4 The PPB in Evolution;156
5.1.2;7.2 The PPB and the Cell Cycle;157
5.1.2.1;7.2.1 A Coupling Between Cell Cycle and PPB Formation?;157
5.1.2.2;7.2.2 The Cell Cycle and G2/M Transition;157
5.1.2.2.1;7.2.2.1 Cyclin-Dependent Kinases;160
5.1.2.2.2;7.2.2.2 Cyclins;160
5.1.2.2.3;7.2.2.3 CDK Inhibitors;160
5.1.2.2.4;7.2.2.4 CKS Proteins;161
5.1.2.2.5;7.2.2.5 Regulation of CDK Complexes by Phosphorylation;161
5.1.2.3;7.2.3 Core Cell Cycle Proteins Identified at the PPB;161
5.1.3;7.3 The PPB and the Pre-Mitotic Cell;163
5.1.3.1;7.3.1 The Nucleus;163
5.1.3.2;7.3.2 Vacuoles and the Phragmosome;164
5.1.3.3;7.3.3 Golgi Apparatus and Endocytosis;165
5.1.4;7.4 Structure and Dynamics of the PPB;165
5.1.4.1;7.4.1 Microtubules;165
5.1.4.1.1;7.4.1.1 MT Dynamics at the Cortex;166
5.1.4.1.2;7.4.1.2 Origin and Dynamics of PPB Microtubules;166
5.1.4.1.3;7.4.1.3 Non PPB Microtubules During the G2/M Transition;167
5.1.4.2;7.4.2 Actin;169
5.1.4.3;7.4.3 Proteins Localized to the PPB: A Critical Review;170
5.1.4.3.1;7.4.3.1 Preliminary Remarks;170
5.1.4.3.2;7.4.3.2 Proteins Potentially Involved in PPB Formation;170
5.1.4.3.3;7.4.3.3 Proteins Potentially Involved in CDS Establishment;178
5.1.5;7.5 The PPB and the Division Plane of Plant Cells;179
5.1.5.1;7.5.1 Introduction;179
5.1.5.2;7.5.2 Mutations Affecting the PPB;179
5.1.5.3;7.5.3 The PPB and Cortical Division Site Establishment;183
5.1.5.4;7.5.4 The PPB and the Prophase Spindle;184
5.1.6;7.6 Conclusions;185
5.1.7;References;186
5.2;Chapter 8: Acentrosomal Spindle Formation Through the Heroic Age of Microscopy: Past Techniques, Present Thoughts, and Future Directions;195
5.2.1;8.1 Early Fixation Techniques;196
5.2.2;8.2 Light Microscopy Techniques;198
5.2.3;8.3 Transmission Electron Microscopy (TEM) Techniques;200
5.2.4;8.4 Fluorescence Microscopy: Immunofluorescence;202
5.2.5;8.5 Fluorescent Microscopy Techniques: Intrinsic Fluorescent Proteins;205
5.2.6;8.6 Acentrosomal Bipolarity Organized by the PPB;208
5.2.7;8.7 The Future Directions in Acentrosomal Spindle Formation;209
5.2.8;References;210
5.3;Chapter 9: Microtubule Organization in the Phragmoplast;214
5.3.1;9.1 Introduction;214
5.3.2;9.2 Microtubule-Interacting Factors in the Phragmoplast;216
5.3.3;9.3 Organization of Microtubule Minus Ends in the Phragmoplast;221
5.3.4;9.4 Organization of Microtubule Plus Ends in the Phragmoplast;222
5.3.5;9.5 Stability and Turnovers of Microtubules in the Phragmoplast;223
5.3.6;9.6 Regulation of Phragmoplast MT Dynamics by Post-Translational Modifications;224
5.3.7;9.7 Conclusion: Assembly of the Phragmoplast by Mini-Phragmoplasts;225
5.3.8;References;226
6;Part III The Cytoskeleton in Plant Growth and Development;233
6.1;Chapter 10: Signaling to the Cytoskeleton in Diffuse Cell Growth;234
6.1.1;10.1 Signals Modulating Diffuse Cell Growth;235
6.1.1.1;10.1.1 Phytohormones;235
6.1.1.2;10.1.2 Mechanical Signals;237
6.1.2;10.2 Signal Transduction Pathways Regulating MFs;238
6.1.3;10.3 Signal Transduction Pathways that Transmit Signals to MTs;240
6.1.3.1;10.3.1 ROP GTPase Signaling;241
6.1.3.2;10.3.2 Protein Kinases and Phosphatases;242
6.1.3.2.1;10.3.2.1 Perspective;242
6.1.4;References;243
6.2;Chapter 11: Microtubule and Cell Shape Determination;249
6.2.1;11.1 Microtubules Determine Cell Shape;249
6.2.2;11.2 Distinct MT Array Organization Correlates with Cell Shape: Wild-Type Cells;250
6.2.3;11.3 Helical Growth as an Unusual Case of Growth Anisotropy;251
6.2.4;11.4 Helical MT Organization Underlies Skewed Cell Growth;254
6.2.5;11.5 Toward Elucidation of Symmetry-Breaking Factors;256
6.2.6;11.6 Tissue Morphology Affects Microtubule Alignment;258
6.2.7;References;259
6.3;Chapter 12: Cytoskeleton and Root Hair Growth;262
6.3.1;12.1 Introduction;262
6.3.2;12.2 Root Hair Initiation;263
6.3.2.1;12.2.1 Selection of the Bulge Site;263
6.3.2.2;12.2.2 The Cytoskeleton in Bulge Formation;264
6.3.3;12.3 Root Hair Tip Growth: General Considerations and Organelle Distribution;265
6.3.3.1;12.3.1 Actin Cytoskeleton in Root Hair Tip Growth;265
6.3.3.2;12.3.2 Myosin in Root Hair Tip Growth;267
6.3.3.3;12.3.3 Microtubules and Root Hair Tip Growth;268
6.3.3.4;12.3.4 Membrane Trafficking and Tip Growth;269
6.3.3.5;12.3.5 Signaling Factors in Tip Growth;271
6.3.4;12.4 Conclusions;272
6.3.5;References;274
6.4;Chapter 13: Microtubules, MAPs and Xylem Formation;279
6.4.1;13.1 Introduction;279
6.4.2;13.2 Microtubule Organization in Xylem Cells;282
6.4.3;13.3 Impact of Pharmacological Treatments on Microtubules in Xylem Cells;288
6.4.4;13.4 Reorientation of the Microtubule Network Axis During Xylem Cell Formation;291
6.4.5;13.5 Expression of Microtubule and MAP Genes During Xylem Formation;292
6.4.5.1;13.5.1 Tubulin During Xylem Formation;292
6.4.5.2;13.5.2 MAP70 Microtubule Associated Protein During Xylem Vessel Formation;293
6.4.5.3;13.5.3 MIDD1 Microtubule Plus-End Associated Protein During Xylem Vessel Formation;294
6.4.5.4;13.5.4 The Cross-Bridging MAP65 During Xylem Vessel Formation;296
6.4.5.5;13.5.5 FRA1 Kinesin During Xylem Cell Wall Formation;297
6.4.5.6;13.5.6 FRA2 Katanin During Xylem Cell Wall Formation;299
6.4.5.7;13.5.7 MAP20s During Xylem Cell Wall Formation;299
6.4.6;13.6 Microtubules and Cellulose Synthesis in Xylem Cells;299
6.4.7;13.7 Microtubules and the Global Patterning of the Xylem Cell Wall;300
6.4.8;13.8 Conclusion;302
6.4.9;References;303
6.5;Chapter 14: The Cytoskeleton and Root Growth Behavior;309
6.5.1;14.1 Introduction;309
6.5.2;14.2 Roots Grow Using a Combination of Cell Division and Cell Expansion;312
6.5.2.1;14.2.1 Controlled Cell Division Contributes to Root Growth;312
6.5.2.2;14.2.2 Regulated Cell Expansion Also Contributes to Root Growth;313
6.5.3;14.3 Mutations in Tubulin Genes Affect Microtubule Arrays and Root Skewing;314
6.5.4;14.4 Mutations in Microtubule Associated Proteins Also Lead to Abnormal Root Development;315
6.5.5;14.5 Other Mutations that Alter Root Growth Behavior;319
6.5.6;14.6 Natural Variation in Root Growth Behavior;322
6.5.7;14.7 Closing Remarks;324
6.5.8;References;324
7;Index;329



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.