Liu | Recent Advances in Intelligent Image Search and Video Retrieval | Buch | 978-3-319-84816-7 | sack.de

Buch, Englisch, Band 121, 235 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g

Reihe: Intelligent Systems Reference Library

Liu

Recent Advances in Intelligent Image Search and Video Retrieval


Softcover Nachdruck of the original 1. Auflage 2017
ISBN: 978-3-319-84816-7
Verlag: Springer International Publishing

Buch, Englisch, Band 121, 235 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g

Reihe: Intelligent Systems Reference Library

ISBN: 978-3-319-84816-7
Verlag: Springer International Publishing


This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring. 

Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant content from images and videos, a challenge this book addresses.This book initially reviews the major feature representation and extraction methods and effective learning and recognition approaches, which have broad applications in the context of intelligent image search and video retrieval. It subsequently presents novel methods, such as improved soft assignment coding, Inheritable Color Space (InCS) and the Generalized InCS framework, the sparse kernel manifold learner method, the efficient Support Vector Machine (eSVM), and the Scale-Invariant Feature Transform (SIFT) features in multiple color spaces. Lastly, the book presents clothing analysis for subject identification and retrieval, and performance evaluation methods of video analytics for traffic monitoring.

Digital images and videos are proliferating at an amazing speed in the fields of science, engineering and technology, media and entertainment. With the huge accumulation of such data, keyword searches and manual annotation schemes may no longer be able to meet the practical demand for retrieving relevant content from images and videos, a challenge this book addresses.

Liu Recent Advances in Intelligent Image Search and Video Retrieval jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Feature Representation and Extraction for Image Search and Video Retrieval.- Learning and Recognition Methods for Image Search and Video Retrieval.-  Improved Soft Assignment Coding for Image Classi?cation.- Inheritable Color Space (InCS) and Generalized InCS Framework with Applications to Kinship Veri?cation.- Novel Sparse Kernel Manifold Learner for Image Classi?cation Applications.- A New Ef?cient SVM (eSVM) with Applications to Accurate and Ef?cient Eye Search in Images.- SIFT Features in Multiple Color Spaces for Improved Image Classi?cation.- Clothing Analysis for Subject Identi?cation and Retrieval.- Performance Evaluation of Video Analytics for Traf?c Incident Detection and Vehicle Counts Collection.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.