Buch, Englisch, 210 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g
A Neural Network Approach
Buch, Englisch, 210 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 359 g
Reihe: Advances in Industrial Control
ISBN: 978-1-4471-1076-7
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
Weitere Infos & Material
1. Neural Networks.- 1.1 Introduction.- 1.2 Model of a Neuron.- 1.3 Architectures of Neural Networks.- 1.4 Various Neural Networks.- 1.5 Learning and Approximation.- 1.6 Applications of Neural Networks.- 1.7 Mathematical Preliminaries.- 1.8 Summary.- 2. Sequential Nonlinear Identification.- 2.1 Introduction.- 2.2 Variable Neural Networks.- 2.3 Dynamical System Modelling by Neural Networks.- 2.4 Stable Nonlinear Identification.- 2.5 Sequential Nonlinear Identification.- 2.6 Sequential Identification of Multivariable Systems.- 2.7 An Example.- 2.8 Summary.- 3. Recursive Nonlinear Identification.- 3.1 Introduction.- 3.2 Nonlinear Modelling by VPBF Networks.- 3.3 Structure Selection of Neural Networks.- 3.4 Recursive Learning of Neural Networks.- 3.5 Examples.- 3.6 Summary.- 4. Multiobjective Nonlinear Identification.- 4.1 Introduction.- 4.2 Multiobjective Modelling with Neural Networks.- 4.3 Model Selection by Genetic Algorithms.- 4.4 Multiobjective Identification Algorithm.- 4.5 Examples.- 4.6 Summary.- 5. Wavelet Based Nonlinear Identification.- 5.1 Introduction.- 5.2 Wavelet Networks.- 5.3 Identification Using Fixed Wavelet Networks.- 5.4 Identification Using Variable Wavelet Networks.- 5.5 Identification Using B-spline Wavelets.- 5.6 An Example.- 5.7 Summary.- 6. Nonlinear Adaptive Neural Control.- 6.1 Introduction.- 6.2 Adaptive Control.- 6.3 Adaptive Neural Control.- 6.4 Adaptation Algorithm with Variable Networks.- 6.5 Examples.- 6.6 Summary.- 7. Nonlinear Predictive Neural Control.- 7.1 Introduction.- 7.2 Predictive Control.- 7.3 Nonlinear Neural Predictors.- 7.4 Predictive Neural Control.- 7.5 On-line Learning of Neural Predictors.- 7.6 Sequential Predictive Neural Control.- 7.7 An Example.- 7.8 Summary.- 8. Variable Structure Neural Control.- 8.1 Introduction.- 8.2 Variable Structure Control.- 8.3 Variable Structure Neural Control.- 8.4 Generalised Variable Structure Neural Control.- 8.5 Recursive Learning for Variable Structure Control.- 8.6 An Example.- 8.7 Summary.- 9. Neural Control Application to Combustion Processes.- 9.1 Introduction.- 9.2 Model of Combustion Dynamics.- 9.3 Neural Network Based Mode Observer.- 9.4 Output Predictor and Controller.- 9.5 Active Control of a Simulated Combustor.- 9.6 Active Control of an Experimental Combustor.- 9.7 Summary.