Liu | Monte Carlo Strategies in Scientific Computing | Buch | 978-0-387-76369-9 | sack.de

Buch, Englisch, 344 Seiten, Format (B × H): 154 mm x 236 mm, Gewicht: 1130 g

Reihe: Springer Series in Statistics

Liu

Monte Carlo Strategies in Scientific Computing

Buch, Englisch, 344 Seiten, Format (B × H): 154 mm x 236 mm, Gewicht: 1130 g

Reihe: Springer Series in Statistics

ISBN: 978-0-387-76369-9
Verlag: Springer


A large number of scientists and engineers use Monte Carlo simulation as an essential tool in their work. This paperback edition (a reprint of the 2001 Springer edition) provides an up-to-date and self-contained summary of recent research results. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods. Many problems discussed in the later chapters can be potential thesis topics for masters’ or Ph.D. students in statistics or computer science departments.

Liu Monte Carlo Strategies in Scientific Computing jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction and Examples.- 2 Basic Principles: Rejection, Weighting, and Others.- 3 Theory of Sequential Monte Carlo.- 4 Sequential Monte Carlo in Action.- 5 Metropolis Algorithm and Beyond.- 6 The Gibbs Sampler.- 7 Cluster Algorithms for the Ising Model.- 8 General Conditional Sampling.- 9 Molecular Dynamics and Hybrid Monte Carlo.- 10 Multilevel Sampling and Optimization Methods.- 11 Population-Based Monte Carlo Methods.- 12 Markov Chains and Their Convergence.- 13 Selected Theoretical Topics.- A Basics in Probability and Statistics.- A.1 Basic Probability Theory.- A.1.1 Experiments, events, and probability.- A.1.2 Univariate random variables and their properties.- A.1.3 Multivariate random variable.- A.1.4 Convergence of random variables.- A.2 Statistical Modeling and Inference.- A.2.1 Parametric statistical modeling.- A.2.2 Frequentist approach to statistical inference.- A.2.3 Bayesian methodology.- A.3 Bayes Procedure and Missing Data Formalism.- A.3.1 The joint and posterior distributions.- A.3.2 The missing data problem.- A.4 The Expectation-Maximization Algorithm.- References.- Author Index.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.