E-Book, Englisch, Band 6, 671 Seiten, Gewicht: 10 g
Mathematics, Logic, Philosophy
E-Book, Englisch, Band 6, 671 Seiten, Gewicht: 10 g
Reihe: De Gruyter Series in Logic and Its ApplicationsISSN
ISBN: 978-3-11-019968-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
Weitere Infos & Material
Frontmatter
Table of Contents
Introduction. Bertrand Russell—The Invention of Mathematical Philosophy
Set Theory after Russell: The Journey Back to Eden
A Way Out
Completeness and Iteration in Modern Set Theory
Was sind und was sollen (neue) Axiome?
Iterating S Operations in Admissible Set Theory without Foundation: A Further Aspect of Metapredicative Mahlo
Typical Ambiguity: Trying to Have Your Cake and Eat It Too
Is ZF Finitistically Reducible?
Inconsistency in the Real World
Predicativity, Circularity, and Anti-Foundation
Russell’s Paradox and Diagonalization in a Constructive Context
Constructive Solutions of Continuous Equations
Russell’s Paradox in Consistent Fragments of Frege’s Grundgesetze der Arithmetik
On a Russellian Paradox about Propositions and Truth
The Consistency of the Naive Theory of Properties
The Significance of the Largest and Smallest Numbers for the Oldest Paradoxes
The Prehistory of Russell’s Paradox
Logicism’s ‘Insolubilia’ and Their Solution by Russell’s Substitutional Theory
Substitution and Types: Russell’s Intermediate Theory
Propositional Ontology and Logical Atomism
Classes of Classes and Classes of Functions in Principia Mathematica
A “Constructive” Proper Extension of Ramified Type Theory (The Logic of Principia Mathematica, Second Edition, Appendix B)
Russell on Method
Paradoxes in Göttingen
David Hilbert and Paul du Bois-Reymond: Limits and Ideals
Russell’s Paradox and Hilbert’s (much Forgotten) View of Set Theory
Objectivity: The Justification for Extrapolation
Russell’s Absolutism vs. (?) Structuralism
Mathematicians and Mathematical Objects
Russell’s Paradox and Our Conception of Properties, or: Why Semantics Is no Proper Guide to the Nature of Properties
The Many Lives of Ebenezer Wilkes Smith
What Makes Expressions Meaningful? A Reflection on Contexts and Actions
Backmatter