Lindsey Applying Generalized Linear Models
Erscheinungsjahr 2008
ISBN: 978-0-387-22730-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 256 Seiten, Web PDF
Reihe: Springer Texts in Statistics
ISBN: 978-0-387-22730-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Generalized Linear Modelling: Statistical Modelling.- Exponential Dispersion Models.- Linear Structure.- Three Components of a GLM.- Possible Models.- Inference.- Exercises. Discrete Data: Log Linear Models.- Models of Change.- Overdispersion.- Exercises. Fitting and Comparing Probability Distributions: Fitting Distributions.- Setting Up the Model.- Special Cases.- Exercises. Growth Curves: Exponential Growth Curves.- Logistic Growth Curve.- Gomperz Growth Curve.- More Complex Models.- Exercises. Time Series: Poisson Processes.- Markov Processes.- Repeated Measurements.- Exercises. Survival Data: General Concepts.- 'Nonparametric' Estimation.- Parametric Models.- 'Semiparametric' Models.- Exercises. Event Histories: Event Histories and Survival Distributions.- Counting processes.- Modelling Event Histories.- Generalizations.- Exercises. Spatial data: Spatial Interaction.- Spatial Patterns.- Exercises. Normal Models: Linear Regression.- Analysis of Variance.- Nonlinear Regression.- Exercises. Dynamic Models: Dynamic Generalized Linear Models.- Normal Models.- Count Data.- Positive Response Data.- Continuous Time Nonlinear Models. Appendices: Inference.- Diagnostics.- References.- Index.