Lin / Xie / Wasilewska | Data Mining: Foundations and Practice | Buch | 978-3-540-78487-6 | sack.de

Buch, Englisch, Band 118, 562 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2170 g

Reihe: Studies in Computational Intelligence

Lin / Xie / Wasilewska

Data Mining: Foundations and Practice

Buch, Englisch, Band 118, 562 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2170 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-540-78487-6
Verlag: Springer


The IEEE ICDM 2004 workshop on the Foundation of Data Mining and the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented Data and Web Mining focused on topics ranging from the foundations of data mining to new data mining paradigms. The workshops brought together both data mining researchers and practitioners to discuss these two topics while seeking solutions to long standing data mining problems and stimul- ing new data mining research directions. We feel that the papers presented at these workshops may encourage the study of data mining as a scienti?c ?eld and spark new communications and collaborations between researchers and practitioners. Toexpressthevisionsforgedintheworkshopstoawiderangeofdatam- ing researchers and practitioners and foster active participation in the study of foundations of data mining, we edited this volume by involving extended and updated versions of selected papers presented at those workshops as well as some other relevant contributions. The content of this book includes st- ies of foundations of data mining from theoretical, practical, algorithmical, and managerial perspectives. The following is a brief summary of the papers contained in this book.
Lin / Xie / Wasilewska Data Mining: Foundations and Practice jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Compact Representations of Sequential Classification Rules.- An Algorithm for Mining Weighted Dense Maximal 1-Complete Regions.- Mining Linguistic Trends from Time Series.- Latent Semantic Space for Web Clustering.- A Logical Framework for Template Creation and Information Extraction.- A Bipolar Interpretation of Fuzzy Decision Trees.- A Probability Theory Perspective on the Zadeh Fuzzy System.- Three Approaches to Missing Attribute Values: A Rough Set Perspective.- MLEM2 Rule Induction Algorithms: With and Without Merging Intervals.- Towards a Methodology for Data Mining Project Development: The Importance of Abstraction.- Fining Active Membership Functions in Fuzzy Data Mining.- A Compressed Vertical Binary Algorithm for Mining Frequent Patterns.- Naïve Rules Do Not Consider Underlying Causality.- Inexact Multiple-Grained Causal Complexes.- Does Relevance Matter to Data Mining Research?.- E-Action Rules.- Mining E-Action Rules, System DEAR.- Definability of Association Rules and Tables of Critical Frequencies.- Classes of Association Rules: An Overview.- Knowledge Extraction from Microarray Datasets Using Combined Multiple Models to Predict Leukemia Types.- On the Complexity of the Privacy Problem in Databases.- Ensembles of Least Squares Classifiers with Randomized Kernels.- On Pseudo-Statistical Independence in a Contingency Table.- Role of Sample Size and Determinants in Granularity of Contingency Matrix.- Generating Concept Hierarchies from User Queries.- Mining Efficiently Significant Classification Association Rules.- Data Preprocessing and Data Mining as Generalization.- Capturing Concepts and Detecting Concept-Drift from Potential Unbounded, Ever-Evolving and High-Dimensional Data Streams.- A Conceptual Framework of Data Mining.- How to Prevent Private Datafrom being Disclosed to a Malicious Attacker.- Privacy-Preserving Naive Bayesian Classification over Horizontally Partitioned Data.- Using Association Rules for Classification from Databases Having Class Label Ambiguities: A Belief Theoretic Method.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.