Buch, Englisch, Band 118, 562 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2170 g
Buch, Englisch, Band 118, 562 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2170 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-540-78487-6
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
Compact Representations of Sequential Classification Rules.- An Algorithm for Mining Weighted Dense Maximal 1-Complete Regions.- Mining Linguistic Trends from Time Series.- Latent Semantic Space for Web Clustering.- A Logical Framework for Template Creation and Information Extraction.- A Bipolar Interpretation of Fuzzy Decision Trees.- A Probability Theory Perspective on the Zadeh Fuzzy System.- Three Approaches to Missing Attribute Values: A Rough Set Perspective.- MLEM2 Rule Induction Algorithms: With and Without Merging Intervals.- Towards a Methodology for Data Mining Project Development: The Importance of Abstraction.- Fining Active Membership Functions in Fuzzy Data Mining.- A Compressed Vertical Binary Algorithm for Mining Frequent Patterns.- Naïve Rules Do Not Consider Underlying Causality.- Inexact Multiple-Grained Causal Complexes.- Does Relevance Matter to Data Mining Research?.- E-Action Rules.- Mining E-Action Rules, System DEAR.- Definability of Association Rules and Tables of Critical Frequencies.- Classes of Association Rules: An Overview.- Knowledge Extraction from Microarray Datasets Using Combined Multiple Models to Predict Leukemia Types.- On the Complexity of the Privacy Problem in Databases.- Ensembles of Least Squares Classifiers with Randomized Kernels.- On Pseudo-Statistical Independence in a Contingency Table.- Role of Sample Size and Determinants in Granularity of Contingency Matrix.- Generating Concept Hierarchies from User Queries.- Mining Efficiently Significant Classification Association Rules.- Data Preprocessing and Data Mining as Generalization.- Capturing Concepts and Detecting Concept-Drift from Potential Unbounded, Ever-Evolving and High-Dimensional Data Streams.- A Conceptual Framework of Data Mining.- How to Prevent Private Datafrom being Disclosed to a Malicious Attacker.- Privacy-Preserving Naive Bayesian Classification over Horizontally Partitioned Data.- Using Association Rules for Classification from Databases Having Class Label Ambiguities: A Belief Theoretic Method.