Lieberman | Process Engineering for a Small Planet | Buch | 978-0-470-58794-2 | sack.de

Buch, Englisch, 304 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 607 g

Lieberman

Process Engineering for a Small Planet

How to Reuse, Re-Purpose, and Retrofit Existing Process Equipment
1. Auflage 2010
ISBN: 978-0-470-58794-2
Verlag: Wiley

How to Reuse, Re-Purpose, and Retrofit Existing Process Equipment

Buch, Englisch, 304 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 607 g

ISBN: 978-0-470-58794-2
Verlag: Wiley


Methods for more planet-friendly process engineering

Our earth is just one big, complex Process Facility with limited air, water, and mineral resources. It responds to a number of process variables—among them, humanity and the environmental effects of our carbon consumption. What can professionals in the Hydrocarbon Process Industry do to retard environmental degradation? Rather than looking to exotic technology for solutions, Process Engineering for a Small Planet details ready-at-hand methods that the process engineer can employ to help combat the environmental crisis.

Drawing from the author's professional experience working with petroleum refineries petroleum refineries, petrochemical plants, and natural gas wells, this handbook explains how to operate and retrofit process facilities to:

- Reuse existing process equipment
- Save energy
- Reduce greenhouse gas emissions
- Expand plant capacity without installing new equipment
- Reduce corrosion and equipment failures

Covering topics from expanding fractionator and compressor capacity and vacuum tower heater expansion to minimizing process water consumption and increasing centrifugal pump capacity, Process Engineering for a Small Planet offers big ideas for saving our small planet.

Lieberman Process Engineering for a Small Planet jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Foreword xv

Preface xvii

Introduction: Turning of the Tide 1

1. Expanding Fractionator and Compressor Capacity 3

Reuse of Existing Fractionator

Changing Tray Deck Panels

Alternates to New Compressor

Keeping Compressor Rotor Clean

Calculating Liquid Injection Rates to Compressor

2. Vacuum Tower Heater Expansion 17  Entrainment Velocity Limitations  Missing Tray Deck Manways  Heater Draft Limitation  Improving Ejector Performance  Velocity Steam in Heater Passes

3. Natural-Draft-Fired Heaters 27  Control Excess Air  O2 and Combustible Analyzers  Improving Air–Fuel Mixing  Convective Section Air Leaks  Air Preheater Leaks  Indirect Air Preheat

4. Crude Pre-Flash Towers 37  Pre-Flash Tower Flooding  Energy Saving with Pre-Flash Towers  Capacity Benefits  Pre-Flash Tower External Reflux

5. Amine Regeneration and Sulfur Recovery 47  Amine Capacity Expansion  Sulfur Plant Capacity Expansion  Rich Amine Flash Drum Design  Cascaded Seal Legs  Sulfur Recovery from Sour Water Stripper Off-Gas  Acid Gas of High CO2 Content  Sulfur Plant Oxygen Enrichment

6. Treating and Drying Hydrocarbons 59  Jet Fuel Treating  Salt Dryer Operation  Water-Washing Sodium Naphthanates from Jet Fuel  Pipe Distributor Design  Treating Sour Naphtha  Converting Mercaptans to Disulfides

7. Minimizing Process Water Consumption 71  Two-Stage Wastewater Stripper  Steam Condensate Recovery  Condensate Drum Balance Line Location  Water Hammer  Measuring Condensate Recovery  Cooling Tower Cycles of Concentration

8. Incremental Expansion Design Concept: Reprocessing Waste Lube Oil 79  Reprocessing Waste Lube Oil  Vacuum Tower Design  Wash Oil Grid Coking  Vapor Horn Design in Vacuum Towers  Stripping Tray Efficiency  Precondenser Fouling  Pump NPSH Limit in Vacuum Service  Exchanger Fouling in Waste Oil Service  Transfer-Line Sonic Velocity

9. Improving Fractionation Efficiency in Complex Fractionators 91  Pre-Flash Tower Concept  Intermediate Reflux  Stripping Tray Efficiency  Maximizing Diesel Recovery from Crude  Picket Weirs  Adjusting Pump-arounds  Pressure Optimization

10. Increasing Centrifugal Pump Capacity and Efficiency 103  Hydraulic Limitations  Worn Impeller-to-Case Clearances  Impeller Wear Ring  Upgrading Impeller Size  Marginal Cavitation  Viscosity Effects on Efficiency  NPSH Limited Condition

11. Eliminating Process Control Valves Using Variable-Speed Drivers 113  Frequency Control of Motors  Eliminating Control Valves on Pump Discharge  Direct Speed Control of Steam Turbine  Variable-Speed Compressors  Spill-backs Waste Energy  Calculating Incentive for Variable-Speed Drivers  Floating Tower Pressure Control

12. Expanding Refrigeration Capacity 123  Centrifugal Compressor Head vs. Flow Curve  Calculating Compression Work  Horsepower vs. Suction Pressure Limited  Effect of Increasing Suction Pressure  Reducing Refrigerant Condenser Fouling  Effect of Noncondensibles  Condensate Backup in Condenser

13. Oversizing Equipment Pitfalls 135  Amine H2 S Scrubber  Optimizing Number of Trays in Absorbers  Consequences of Overdesign  Use of Demister in Knockout Drum  Low Demister Velocity Promotes Mist Entrainment

14. Optimizing Use of Steam Pressure to Minimize Consumption of Energy 145  Preserving the Potential of Steam to Do Work  Power Recovery from Steam to a Reboiler  Use of the Mollier Diagram  Cogeneration Plants  Extracting Work from Reboiler Steam Using  Existing Equipment  Understanding Thermodynamics of Flowing Steam  Steam Turbine Efficiency Checklist

15. Expanding Compressor Capacity and Efficiency 157  Reciprocating Compressors  Pulsation Dampener Plates  Adjustable Head-End Unloaders  Natural Gas Engines  Axial Compressor  Rotor Fouling of Axial Air Compressor  Centrifugal Compressors  Cleaning Centrifugal Compressor Rotor

16. Vapor–Liquid Separator Entrainment Problems 171  Effect of Foam on Indicated Liquid Levels  Hydrogen-Heavy Gas Oil Separtors  Foam Induced Carry-Over  Enhancing De-Entrainment Rates  Vapor Distribution Aids De-Entrainment

17. Retrofitting Shell-and-Tube Heat Exchangers for Greater Efficiency 179  Running Slops Without Fouling  Floating Suction in Charge Tanks  Exchanger Online Spalling  Effect of Feed Interruptions  Tube Velocity and Surface Roughness  Shell-Side Seal Strips  Cooling High-Viscosity Fluids  Expanding Water Cooler Capacity  Hydrocarbon Losses to Cooling Towers

18. Reducing Sulfur and Hydrocarbon Emissions 189  Sulfur Plant Waste Heat Boiler Modifications  Hydrocarbon Leaks in Seawater Cooling Systems  Incinerator Back-Fire in Sulfur Plant Main  Reaction Furnace  Loss of Draft Due to Air Leaks  Global Emissions in Perspective

19. Hydrocarbon Leaks to the Environment 201  Measuring Leaks Through Valves  Fixing Leaking Valves On-Stream  Detecting Leaking Relief Valves  On-Stream Repair of Leaking Relief Valves  Measuring Flows in Flare Lines  Leaks into Cooling Water  Air Cooler Leaks  Valve Stem Packing  Leaking Pump Mechanical Seal and Improper Use of Seal Flush  Fixing Weld Leaks On-Stream

20. Composition-Induced Flooding in Packed Towers: FCU Fractionator Expansion 209  Fluid Cracking Unit Fractionator Expansion  Flooding of Slurry Oil P/A Sections  FCU Fractionator Vapor Line Quench  Multipump Piping Stress Analysis  Perception vs. Reality in Process Design

21. Maintenance for Longer Run Lengths 219  Sulfuric Acid Regeneration  Importance of Reactor Insulation  On-Stream Piping Repairs  Preserving Pump Mechanical Seals  Concept of Avoiding Unit Shutdowns

22. Instrument Malfunctions 229  Control Valve Loss Due to Instrument Air Pressure Signal  Stuck Flow Control Valve Stem  Mislocated Liquid-Level Tap  Reducing Load to Vacuum System by Correcting False Level Indication

23. Summary Checklist for Reuse of Process Equipment 237  Fired Heaters  Heat Exchangers  Fin-Fan Air Coolers  Distillation Tower Trays  Vapor–Liquid Separators  Centrifugal Pumps  Fixed-Bed Reactors  Electric Motors  Gas and Steam Turbines  Reciprocating and Centrifugal Compressors  Air Blowers  Water–Hydrocarbon Separators  Overcoming Utility System Limits

24. Water–Hydrocarbon Separation: Corrosive Effects of Water 245  Water–Oil Separators  Corrosive Elements from Cracking Plants  Water Traps in Strippers  Current CO2 Levels  Environmental Overview  Appendix: Solar Power Potential 257  Index 259


NORMAN P. LIEBERMAN is an independent process design engineer and field troubleshooter. His clients are refineries and petrochemical plants. He is well known in the process industry for his seminar "Troubleshooting Process Operations," which has been presented to over 16,000 engineers and plant operators.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.