Liao | Statistical Group Comparison | E-Book | sack.de
E-Book

E-Book, Englisch, 240 Seiten, E-Book

Reihe: Wiley Series in Probability and Statistics

Liao Statistical Group Comparison


1. Auflage 2011
ISBN: 978-1-118-15061-0
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 240 Seiten, E-Book

Reihe: Wiley Series in Probability and Statistics

ISBN: 978-1-118-15061-0
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



An incomparably useful examination of statistical methods forcomparison
The nature of doing science, be it natural or social, inevitablycalls for comparison. Statistical methods are at the heart of suchcomparison, for they not only help us gain understanding of theworld around us but often define how our research is to be carriedout. The need to compare between groups is best exemplified byexperiments, which have clearly defined statistical methods.However, true experiments are not always possible. What complicatesthe matter more is a great deal of diversity in factors that arenot independent of the outcome.
Statistical Group Comparison brings together a broad range ofstatistical methods for comparison developed over recent years. Thebook covers a wide spectrum of topics from the simplest comparisonof two means or rates to more recently developed statisticsincluding double generalized linear models and Bayesian as well ashierarchical methods. Coverage includes:
* Testing parameter equality in linear regression and othergeneralized linear models (GLMs), in order of increasingcomplexity
* Likelihood ratio, Wald, and Lagrange multiplier statisticsexamined where applicable
* Group comparisons involving latent variables in structuralequation modeling
* Models of comparison for categorical latent variables
Examples are drawn from the social, political, economic, andbiomedical sciences; many can be implemented using widely availablesoftware. Because of the range and the generality of thestatistical methods covered, researchers across manydisciplines-beyond the social, political, economic, and biomedicalsciences-will find the book a convenient reference for many aresearch situation where comparisons may come naturally.

Liao Statistical Group Comparison jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface.
1. Introduction.
1.1 Rationale for Statistical Comparison.
1.2 Comparative Research in the Social Sciences.
1.3 Focus of the Book.
1.4 Outline of the Book.
2. Statistical Foundation for Comparison.
2.1 A System for Statistical Comparison.
2.2 Test Statistics.
2.3 What to Compare?
3. Comparison in Linear Models.
3.1 Introduction.
3.2 An Example.
3.3 Some Preliminary Considerations.
3.4 The Linear Model.
3.5 Comparing Two Means.
3.6 ANOVA.
3.7 Multiple Comparison Methods.
3.8 ANCOVA.
3.9 Multiple Linear Regression.
3.10 Regression Decomposition.
3.11 Which Linear Method to Use?
4. Nonparametric Comparison.
4.1 Nonparametric Tests.
4.2 Resampling Methods.
4.3 Relative Distribution Methods.
5. Comparison of Rates.
5.1 The Data.
5.2 Standardization.
5.3 Decomposition.
6. Comparison in Generalized Linear Models.
6.1 Introduction.
6.2 Comparing Generalized Linear Models.
6.3 A Logit Model Example.
6.4 A Hazard Rate Model Example.
6.A Data Used in Section 6.4.
7. Additional Topics of Comparison in Generalized LinearModels.
7.1 Introduction.
7.2 GLM for Matched Case-Control Studies.
7.3 Dispersion Heterogeneity.
7.4 Bayesian Generalized Linear Models.
7.A The Data for the n : m Design.
8. Comparison in Structural Equation Modeling.
8.1 Introduction.
8.2 Statistical Background.
8.3 Mean and Covariance Structures.
8.4 Group Comparison in SEM.
8.5 An Example.
8.A Examples of Computer Program Listings.
9. Comparison with Categorical Latent Variables.
9.1 Introduction.
9.2 Latent Class Models.
9.3 Latent Trait Models.
9.4 Latent Variable Models for Continuous Indicators.
9.5 Casual Models with Categorical Latent variables.
9.6 Comparison with Categorical Latent Variables.
9.7 Examples.
9.A Software for Categorical Latent Variables.
9.B Computer Program Listings for the Examples.
10. Comparison in Multilevel Analysis.
10.1 Introduction.
10.2 An Introduction to Multilevel Analysis.
10.3 The Basics of the Linear Multilevel Model.
10.4 The Basics of the Generalized Linear Multilevel Model.
10.5 Group as an External Variable in Multilevel Analysis.
10.6 The Relation between Multilevel Analysis and GroupComparison.
10.7 Multiple Membership Models.
10.8 Summary.
10.A Software for Multilevel Analysis.
10.B SAS Program Listings for GLMM Examples.
References.
Index.


TIM FUTING LIAO, PhD, is Associate Professor of Sociology and Statistics at the University of Illinois at Urbana-Champaign. He currently teaches as Senior Lecturer in Sociology at the University of Essex, UK.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.