Buch, Englisch, Band 3916, 155 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
PAKDD 2006 Workshop, BioDM 2006, Singapore, April 9, 2006, Proceedings
Buch, Englisch, Band 3916, 155 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-540-33104-9
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizinische Mathematik & Informatik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
- Naturwissenschaften Biowissenschaften Biowissenschaften
Weitere Infos & Material
Keynote Talk.- Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions.- Database and Search.- A Database Search Algorithm for Identification of Peptides with Multiple Charges Using Tandem Mass Spectrometry.- Filtering Bio-sequence Based on Sequence Descriptor.- Automatic Extraction of Genomic Glossary Triggered by Query.- Frequent Subsequence-Based Protein Localization.- Bio Data Clustering.- gTRICLUSTER: A More General and Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data.- Automatic Orthologous-Protein-Clustering from Multiple Complete-Genomes by the Best Reciprocal BLAST Hits.- A Novel Clustering Method for Analysis of Gene Microarray Expression Data.- Heterogeneous Clustering Ensemble Method for Combining Different Cluster Results.- In-silico Diagnosis.- Rule Learning for Disease-Specific Biomarker Discovery from Clinical Proteomic Mass Spectra.- Machine Learning Techniques and Chi-Square Feature Selection for Cancer Classification Using SAGE Gene Expression Profiles.- Generation of Comprehensible Hypotheses from Gene Expression Data.- Classification of Brain Glioma by Using SVMs Bagging with Feature Selection.- Missing Value Imputation Framework for Microarray Significant Gene Selection and Class Prediction.- Informative MicroRNA Expression Patterns for Cancer Classification.