Li / Yang / Tan | Data Mining for Biomedical Applications | Buch | 978-3-540-33104-9 | sack.de

Buch, Englisch, Band 3916, 155 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g

Reihe: Lecture Notes in Computer Science

Li / Yang / Tan

Data Mining for Biomedical Applications

PAKDD 2006 Workshop, BioDM 2006, Singapore, April 9, 2006, Proceedings

Buch, Englisch, Band 3916, 155 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-33104-9
Verlag: Springer


This book constitutes the refereed proceedings of the International Workshop on Data Mining for Biomedical Applications, BioDM 2006, held in Singapore in conjunction with the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006). The 14 revised full papers presented together with one keynote talk were carefully reviewed and selected from 35 submissions. The papers are organized in topical sections
Li / Yang / Tan Data Mining for Biomedical Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Keynote Talk.- Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions.- Database and Search.- A Database Search Algorithm for Identification of Peptides with Multiple Charges Using Tandem Mass Spectrometry.- Filtering Bio-sequence Based on Sequence Descriptor.- Automatic Extraction of Genomic Glossary Triggered by Query.- Frequent Subsequence-Based Protein Localization.- Bio Data Clustering.- gTRICLUSTER: A More General and Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data.- Automatic Orthologous-Protein-Clustering from Multiple Complete-Genomes by the Best Reciprocal BLAST Hits.- A Novel Clustering Method for Analysis of Gene Microarray Expression Data.- Heterogeneous Clustering Ensemble Method for Combining Different Cluster Results.- In-silico Diagnosis.- Rule Learning for Disease-Specific Biomarker Discovery from Clinical Proteomic Mass Spectra.- Machine Learning Techniques and Chi-Square Feature Selection for Cancer Classification Using SAGE Gene Expression Profiles.- Generation of Comprehensible Hypotheses from Gene Expression Data.- Classification of Brain Glioma by Using SVMs Bagging with Feature Selection.- Missing Value Imputation Framework for Microarray Significant Gene Selection and Class Prediction.- Informative MicroRNA Expression Patterns for Cancer Classification.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.