Li / X-Q Dai | Biomechanical Engineering of Textiles and Clothing | E-Book | sack.de
E-Book

E-Book, Englisch, 428 Seiten

Reihe: Woodhead Publishing Series in Textiles

Li / X-Q Dai Biomechanical Engineering of Textiles and Clothing


1. Auflage 2006
ISBN: 978-1-84569-148-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 428 Seiten

Reihe: Woodhead Publishing Series in Textiles

ISBN: 978-1-84569-148-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Biomechanical engineering enables wearers to achieve the highest level of comfort, fit and interaction from their clothing as it is designed with the mechanics of the body in mind. This enables products to be developed that are specifically designed for the mechanics of their end purpose (e.g. sports bra) as well as the everyday movement of the body. This is the first book to systematically describe the techniques of biomechanical engineering principles, methods, computer simulation, measurements and applications.Biomechanical engineering of textiles and clothing addresses issues of designing and producing textiles and clothing for optimum interaction and contact with the body. It covers the fundamental theories, principles and models behind design and engineering for the human body's biomechanics, contact problems arising between textiles/clothing and the body and the mechanics of fibres, yarns, textiles and clothing. Material properties are discussed in relation to mechanical performance. It also includes coverage of the Clothing Biomechanical Engineering System developed at The Hong Kong Polytechnic University and its associated models and databases. The book concludes with practical examples of clothing applications to illustrate how to carry out biomechanical engineering design for specific applications. - Addresses issues of designing and producing textiles for interaction and contact with the body - Covers fundamental theories, principles and models behind design and engineering - Contains practical examples of clothing applications to illustrate biomechanical engineering design for specific applications

Li / X-Q Dai Biomechanical Engineering of Textiles and Clothing jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1 Textile biomechanical engineering
Y. Li1; X. Zhang2; X.-Q. Dai1,3    1 The Hong Kong Polytechnic University, China
2 Xian University of Engineering Science & Technology, China
3 Soochow University, China 1.1 Background
Health and disease-prevention have been and are of major concern to humans, particularly for 21st century consumers regarding their apparel products. Biological health and psychological happiness are critical indexes reflecting quality of life, in which clothing plays very important roles. Clothing is one of the most intimate objects associated with the daily life of individuals, as it covers most parts of our body most of the time. Consciously or unconsciously, our physiological/biological status and psychological/emotional feelings are closely associated with the clothing we wear. A significant proportion of modern consumers understand the importance of clothing and they demand apparel products with higher added values in terms of functional performance to satisfy various aspects of their biological and psychological needs in communication, protection, healthcare, medicine and sensory comfort during wear. Naturally, engineering apparel products for biological and psychological health has become an integrated part of the concept of bioengineering. What, then, is bioengineering? In February 1998, the United States National Institutes of Health organized a Symposium on bioengineering, at which a definition of bioengineering was formulated as follows: ‘Bioengineering integrates physical, chemical, or mathematical sciences and engineering principles for the study of biology, medicine, behavior, or health. It advances fundamental concepts, creates knowledge from the molecular to the organ systems level, and develops innovative biologics, materials, processes, implants, devices, and informatics approaches for the prevention, diagnosis, and treatment of disease, for patient rehabilitation, and for improving health’.1 Angnew pointed out that bioengineering is rooted in physics, mathematics, chemistry, biology, computational sciences, and various engineering disciplines.1 It is the application of a systematic, quantitative and integrative way of thinking about and approaching solutions of problems important in human biology, physiology, medicine, behavior and health of human populations. From this definition, it is clear that the biological problems are too complex to be solved by biologists alone: partners are needed in many disciplines, including physics, mathematics, chemistry, computer sciences, and engineering. Bioengineering integrates principles from a diversity of fields. The creativity of interdisciplinary teams results in a new basic understanding, novel products and innovative technologies. Bioengineering also crosses the boundaries of academia, science, medicine, and industry. Considering that clothing has a significant impact on the health and prevention of diseases, and creating appropriate microclimates for living and appearances that influence the perceptions and behaviors of human beings, clothing bioengineering can be defined in a similar way: ‘Clothing bioengineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to design and engineer clothing for the benefits of human biology, medicine, behavior and health. It advances fundamental concepts; creates knowledge from the molecular to the body–clothing systems level; and develops innovative materials, devices, and apparel products for a healthy lifestyle fashion with functions of comfort, protection, prevention, diagnosis, and treatment of disease, and for improving health.’ Such a definition shows that clothing bioengineering is rooted in physics, mathematics, chemistry, polymer sciences, biology, computational sciences, and engineering disciplines in polymers, fibers, textiles and clothing. It is the application of a systematic, quantitative and integrative way of thinking about and approaching the solutions in problems of how clothing and textiles can be engineered to the benefits of biology, physiology, medicine, behavior and the health of human populations. From this definition, it is clear that clothing bioengineering needs knowledge and close collaborative research of experts from a diversity of fields, including physics, mathematics, chemistry, polymer science, computer sciences, biology, physiology and psychology, as well as engineering disciplines from such industries as polymer, fiber, textile and clothing. The creativity of interdisciplinary teams can result in new basic understanding, novel products and innovative technologies in a number of areas such as: (i) clothing bio-thermal engineering; (ii) clothing biomechanical engineering; (iii) clothing biosensory engineering; (iv) clothing biomedical engineering; and (v) clothing biomaterial engineering. Clothing biomechanical engineering is defined as the application of a systematic and quantitative way of designing and engineering apparel products to meet the biomechanical needs of the human body and to maintain an appropriate pressure and stress distributions on the skin and in the tissues for the performance, health and comfort of the wearer. Clothing biomechanical engineering involves not only the design and engineering of fabrics, but also the measurement of body geometric profiles, and the design and engineering of garments to achieve the required biomechanical functions. Fundamental research to achieve the biomechanical functions involves a number of areas: (i) development of theories, data and models to describe the mechanical behaviors of fiber, yarns and fabric; (ii) development of theories, data and models to describe the geometric and biomechanical behavior of the human body; (iii) development of theories, data and models to describe the dynamic mechanical interactions between the body and garments; (iv) development of computational methods, computing visualization techniques, and engineering databases to integrate all the elements systematically; (v) design and engineering of materials and clothing to achieve desirable biomechanical functions; (vi) development of techniques to characterize the biomechanical functional performances from basic materials to final apparel products. 1.2 History of clothing biomechanical engineering design
Engineering design is an iterative decision-making process in which the basic sciences, mathematics, and engineering sciences are applied to convert resources optimally to meet a stated objective.2 It is the link between scientific discoveries and commercial applications by applying mathematics and science to research and to develop economical solutions to practical technical problems. Engineering design has been successfully applied in a number of engineering areas such as machine manufacturing, civil engineering, and bridge construction. In 1986, the concept of sensory-engineering (Kansei-engineering) was developed by the Mazda Company in Japan as a development of human factors. Sensory means the psychological feeling or image of a product, and sensory engineering refers to the quantitative translation of consumers’ psychological feeling about a product into perceptual design elements. This technique involves determining which sensory attributes elicit particular objective responses from people, and then designing a product using the attributes that elicit the desired responses. Sensory engineering has been applied with great success in the automotive industry, the Mazda Miata (MX-5) being a notable example, and is being extended to other product domains including development of new fibers.3 Textile products have been designed by trial and error for thousands of years. However, in the last few decades, industrial and academic experts4-9 have recognized the importance of systematic engineering design of textiles and textile processes. In 1994, Hearle7 presented the concept of textile-product design with fabric mechanics as a design tool. He described the different approaches available to tackle fabric mechanics in a hierarchical way and developed the concept of a computer-aided total-design system based on three frameworks: a database of information on fiber and fabric properties; a knowledge-based system using the pool of available expertise and historical data; and a deterministic suite of programs in structural mechanics. In the 1990s, Matsuo and Suresh8 proposed the concept of fiber-assembly-structure engineering (FASE) for total material design. Total material design refers to the design of a textile product starting from the conceptual design and going up to the devising of the manufacturing method. The design has three stages: (i) aesthetic-effect or functional design; (ii) basic structure design; (iii) basic manufacturing design. The close relationship between garment design and fabric selection means that fabric representation and design is a fundamental part of any clothing engineering design system. Fabric is a complex media to model, owing to its complicated microstructure. In the past two decades, cloth modeling has drawn wide attention both from the textile engineering and the computer graphics communities. The textile engineering approach concentrated on the relationship between fabric structure and measurement data. In the 1990s, a series of papers by Dastor et al.4,10,11 presented the computer-assisted structural design of industrial woven fabric, which illustrated the possibility of creating a CAD environment to aid...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.