For Data Science, Analysis, and Engineering
Buch, Englisch, 899 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1699 g
ISBN: 978-1-4842-8825-2
Verlag: Apress
In this book, you'll implement numerical algorithms in Kotlin using NM Dev, an object-oriented and high-performance programming library for applied and industrial mathematics. Discover how Kotlin has many advantages over Java in its speed, and in some cases, ease of use. In this book, you’ll see how it can help you easily create solutions for your complex engineering and data science problems.
After reading this book, you'll come away with the knowledge to create your own numerical models and algorithms using the Kotlin programming language.
What You Will Learn - Program in Kotlin using a high-performance numerical library
- Learn the mathematics necessary for a wide range of numerical computing algorithms
- Convert ideas and equations into code
- Put together algorithms and classes to build your own engineering solutions
- Build solvers for industrial optimization problems
- Perform data analysis using basic and advanced statistics
Who This Book Is For
Programmers, data scientists, and analysts with prior experience programming in any language, especially Kotlin or Java.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
Weitere Infos & Material
1: Introduction to Numerical Methods in Kotlin.- 2: Linear Algebra.- 3: Finding Roots of Equations.- 4: Finding Roots of Systems of Equations.- 5: Curve Fitting and Interpolation.- 6: Numerical Differentiation and Integration.- 7: Ordinary Differential Equations.- 8: Partial Differential Equations.- 9: Unconstrained Optimization.- 10: Constrained Optimization.- 11: Heuristics.- 12: Basic Statistics.- 13: Random Numbers and Simulation.- 14: Linear Regression.- 15: Time Series Analysis.