Buch, Englisch, 532 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 820 g
ISBN: 978-981-99-3919-0
Verlag: Springer Nature Singapore
As a fundamental book on machine learning, it addresses the needs of researchers and students who apply machine learning as an important tool in their research, especially those in fields such as information retrieval, natural language processing and text data mining. In order to understand the concepts and methods discussed, readers are expected to have an elementary knowledge of advanced mathematics, linear algebra and probability statistics. The detailed explanations of basic principles, underlying concepts and algorithms enable readers to grasp basic techniques, while the rigorous mathematical derivations and specific examples included offer valuable insights into machine learning.
Zielgruppe
Upper undergraduate
Fachgebiete
Weitere Infos & Material
Chapter 1 Introduction to Machine learning and Supervised Learning.- Chapter 2 Perceptron.- Chapter 3 K-Nearest-Neighbor.- Chapter 4 The Naïve Bayes Method.- Chapter 5 Decision Tree.- Chapter 6 Logistic Regression and Maximum Entropy Model.- Chapter 7 Support Vector Machine.- Chapter 8 Boosting.- Chapter 9 EM Algorithm and Its Extensions.- Chapter 10 Hidden Markov Model.- Chapter 11 Conditional Random Field.