Lewis / Riley | X-Ray Lasers 2008 | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 130, 562 Seiten

Reihe: Springer Proceedings in Physics

Lewis / Riley X-Ray Lasers 2008

Proceedings of the 11th International Conference on X-Ray Lasers, 17-22 August 2008, Belfast, UK
2009
ISBN: 978-1-4020-9924-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 11th International Conference on X-Ray Lasers, 17-22 August 2008, Belfast, UK

E-Book, Englisch, Band 130, 562 Seiten

Reihe: Springer Proceedings in Physics

ISBN: 978-1-4020-9924-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



The 11th International Conference on X-Ray Lasers had contributions in the following topical areas: Transient Collisional X-Ray Lasers, Table-Top High Repetition Rate X-Ray Lasers, Optical-Field Ionised (OFI) X-Ray Lasers, Theory and Simulation of X-Ray Lasers, High Order Harmonic Generation, XUV Optics and X-Ray Laser Applications, Capillary Discharge X-Ray Lasers, Alternative Sources of coherent XUV Radiation. The proceedings of this conference constitute a comprehensive source of reference for scientists involved in researching the development and application of coherent X-Ray sources.

Lewis / Riley X-Ray Lasers 2008 jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Part 1 - Progress in X-Ray Laser Facilities and Infrastructures;17
3.1;Recent Progress in X-Ray Laser Research in JAEA;18
3.1.1;1 Introduction;18
3.1.2;2 New Driver Laser System: TOPAZ;19
3.1.3;3 Application of the 13.9nm laser;20
3.1.4;4 Improvement of Performance of X-ray laser;22
3.2;Recent Advances on LASERIX Facility: Development of XUV Sources System and Applications. Perspectives from 2008 to 2010.;28
3.2.1;1 Introduction and context;28
3.2.2;2 Development of XUV sources;31
3.2.3;3 Use of XUV sources for applications;34
3.2.4;4 Conclusion and perspectives;37
3.2.5;Acknowledgment;37
3.2.6;References;37
3.3;Recent Progress in Grazing-Incidence-Pumped X-Ray Lasers at Uni- BE;38
3.3.1;1 Introduction;38
3.3.2;2 Experimental Setup;39
3.3.3;3 Results for Sn (and Pd) lasing;41
3.3.4;4 Results for Sb lasing;44
3.3.5;Acknowledgements;45
3.3.6;References;45
3.4;Review on Recent High Intensity Physics Experiments Relevant to X- Ray and Quantum Beam Generation at JAEA;47
3.4.1;1 Introduction;47
3.4.2;2 Relativistic Flying Mirror for a Tunable Coherent X-ray Source;48
3.4.3;3 Experimental Study on femto-second laser driven soft X- ray source;51
3.4.4;4 Laser driven multiple quantum beam generation using a thin foil;53
3.4.5;References;56
3.5;Towards an 100 Hz X-Ray Laser Station;57
3.5.1;1 Introduction;57
3.5.2;2 Pump Laser Design;58
3.5.3;3 X-Ray Laser in GRIP geometry;64
3.5.4;4 Summary and outlook;65
3.5.5;Acknowledgement;65
3.5.6;References;65
3.6;Versatile High-Energy and Short-Pulse Operation of PHELIX;67
3.6.1;1 The PHELIX laser system;67
3.6.2;2 Experimental set-up for pumping a short wavelength x-ray laser;69
3.6.3;3 Conclusion;71
3.6.4;References;72
3.7;Central Laser Facility High Power Laser Capabilities Applied to X- Ray Laser Science;73
3.7.1;1 Introduction;73
3.7.2;2 High Power Laser Systems;74
3.7.3;References;76
3.8;TARANIS: A Pump Source for X-Ray Lasers;78
3.8.1;1 Introduction;78
3.8.2;2 Laser System;79
3.8.3;3 The QUB X-Ray Laser;83
3.8.4;References;83
3.9;Photon Frontier Network;84
3.9.1;1 Introduction;84
3.9.2;2 Historical Background;85
3.9.3;3 Framework of Photon Frontier Network;85
3.9.4;4 Advanced Photon Science Alliance;87
3.9.5;5 Consortium for Photon Science and Technology: C-PhoST;89
3.9.6;6 Conclusion;90
3.9.7;Acknowledgement;90
3.9.8;References;91
4;Part 2 - Transient Collisional X-Ray Lasers;92
4.1;Grazing Incidence Pumping (GRIP): Single- vs. Double- Pulse Arrangement;93
4.1.1;1 Introduction;93
4.1.2;2 Analysis of the experiment;94
4.1.3;3 Modelling of the experiment;95
4.1.4;4 Conclusions;100
4.1.5;Acknowledgments;101
4.1.6;References;101
4.2;Generation of the Circularly Polarized X-Ray Laser Using the Pulse- Power Magnet;111
4.2.1;1 Introduction;111
4.2.2;2 Circularly polarized XRL by use of the external magnetic field;112
4.2.3;3 Experiment of the extraction of the circularly polarized XRL;113
4.2.4;4 Summary;116
4.2.5;Acknowledgements;116
4.2.6;References;117
4.3;Gain Saturation of the Ni-like Antimony Laser at 11.4 nm in Grazing- Incidence Pumping Geometry;118
4.3.1;1 Introduction;118
4.3.2;2 Experimental setup;119
4.3.3;3 Experiment Results;119
4.3.4;4 Discussion of the roll-off effect;121
4.3.5;5 Data interpretation;122
4.3.6;References;123
4.4;Temporal Coherence and Spectral Line Shape of a GRIP Transient X- Ray Laser;125
4.4.1;1 Introduction;125
4.4.2;2 Experimental setup;126
4.4.3;3 Source stability;128
4.4.4;4 Experimental results;129
4.4.5;5 Conclusion;131
4.4.6;References:;131
5;Part 3 - High Repetition Rate X-Ray Lasers;132
5.1;High Coherence Injection-Seeded Table-Top Soft X-Ray Lasers at Wavelengths Down to 13.2 nm;133
5.1.1;1 Introduction;133
5.1.2;2 Demonstration of injection seeded soft x-ray lasers at wavelengths below 20 nm;134
5.1.3;3 Spatial coherence measurements;138
5.1.4;4 Pulsewidth measurements;139
5.1.5;5 Conclusions;140
5.1.6;References;140
5.2;Characterization of a Seeded Optical-Field Ionized Collisional Soft X- Ray Laser;142
5.2.1;1 Introduction;142
5.2.2;2 Experimental set up;144
5.2.3;3 Experimental results;145
5.2.4;4 Conclusion;148
5.2.5;References;148
5.3;Investigation on the Spatial Properties of Silver X-Ray Laser Using GRIP Schemes;150
5.3.1;1 Introduction;150
5.3.2;2 Conventional GRIP vs. the GRIP geometry applying a single-profiled pulse;151
5.3.3;3 Spatial distribution of the output beam of silver x-ray laser;153
5.3.4;4 Spatial coherence of silver x-ray laser;155
5.3.5;5 Summary;158
5.3.6;Acknowledgement;159
5.3.7;References;159
5.4;Spatial Filtering of High Order Harmonics by an OFI Plasma Amplifier;160
5.4.1;1 Introduction;160
5.4.2;2 Experimental setup;161
5.4.3;3 Far field pattern;161
5.4.4;4 Wavefront measurement;162
5.4.5;5 Reconstructed sources;164
5.4.6;6 Spatial filtering simulation;164
5.4.7;7 Conclusion;166
5.4.8;References;167
5.5;New Driver Laser System for Double Target X-Ray Lasers at JAEA;168
5.5.1;1 Introduction;168
5.5.2;2 System Configuration of TOPAZ;169
5.5.3;3 XRL generation using TOPAZ;171
5.5.4;4 Summary;171
5.5.5;Acknowledgement;172
5.5.6;References;172
6;Part 4 - Optical-Field-Ionised (OFI) X-Ray Lasers;174
6.1;Toward Ultraintense Compact RBS Pump for Recombination 3.4 nm Laser via OFI;175
6.1.1;1 Introduction;175
6.1.2;2 Single and Double Pass Raman Backscattering Amplifier and Compressor;176
6.1.3;3 X-Ray Laser: Computer “Prescription” and Experimental Arrangement for Gain Generation in “Water Window” at 3.4nm;183
6.1.4;Acknowledgments;186
6.1.5;References;186
6.2;High Brightness Optical-Field-Ionization X-Ray Lasers Driven in Plasma Waveguides;188
6.2.1;1 Introduction;188
6.2.2;2 Experimental Setup;190
6.2.3;3 Results and Discussion;192
6.2.4;References;197
6.3;Temporal Coherence and Spectral Linewidth of a Seeded Soft X- Ray Laser Pulse;198
6.3.1;1 Introduction;198
6.3.2;2 Experimental device;199
6.3.3;3 Results;201
6.3.4;4 Discussion;201
6.3.5;5 Conclusion;203
6.3.6;Acknowledgments;203
6.3.7;References;203
7;Part 5 - Theory and Simulations;204
7.1;Advances in Understanding the Anomalous Dispersion of Plasmas in the X- Ray Regime;215
7.1.1;1 Introduction;215
7.1.2;2 Analysis of Interferometer Experiments;216
7.1.3;3 Finding Anomalous Dispersion in Ne and Na Plasmas;217
7.1.4;4 Finding Anomalous Dispersion in Ce and Yb Plasmas;220
7.1.5;5 Modeling of Carbon Plasmas at Higher Energy;222
7.1.6;6 Conclusions;223
7.1.7;Acknowledgements;223
7.1.8;References;223
7.2;Recent Developments on Seeded or Unseeded Transient X- Ray Lasers;225
7.2.1;1 Introduction;225
7.2.2;2 Simulations of a seeded X-ray laser with the COLAX code;226
7.2.3;3 Role of the time and level of injection;229
7.2.4;4 Duration of the amplified HHG;231
7.2.5;5 Conclusions and future work;232
7.2.6;References;233
7.3;Influence of the number of atomic levels on the modelling of collisional X- ray lasers;234
7.3.1;1 Introduction;234
7.3.2;2 Theoretical modelling of a Ne-like Zinc laser plasma;235
7.3.3;3 Comparison with experiment;236
7.3.4;4 Strongly coupled levels in High Harmonic amplification;238
7.3.5;5 Conclusion and perspectives;239
7.3.6;Acknowledgement;240
7.3.7;References;240
7.4;Modelling of Capillary Z-Pinch Recombination Pumping of Hydrogen- Like Ion EUV Lasers;242
7.4.1;1 Introduction;242
7.4.2;2 Computer Modelling of Laboratory Experiments;243
7.4.3;3 Boron Pinching Plasma;243
7.4.4;4 Influence of Capillary Wall Ablation on Plasma Evolution;247
7.4.5;5 Conclusion;249
7.4.6;Acknowledgement;249
7.4.7;References;249
7.5;Modeling of an Ultra-Short X-Ray Laser Pulse Amplification Through an Optical- Field- Ionized Gas Using a Maxwell- Bloch Treatment;258
7.5.1;1 Introduction;258
7.5.2;2 Modeling;259
7.5.3;3 X-ray Amplification Results;261
7.5.4;4 Conclusion;264
7.5.5;References;265
7.6;Effects of Inhomogeneous Incident Line Focus on 2D Hydrodynamic Behaviour of X- Ray Laser Plasma on Slab;266
7.6.1;1 Introduction;266
7.6.2;2 Inhomogeneity of line focus;267
7.6.3;3 Model equations;268
7.6.4;4 Comparison with 1D similar solution;269
7.6.5;5 Results discussion;269
7.6.6;6 Conclusions;273
7.6.7;Reference;273
7.7;Conversion Efficiency Calculations for Soft X-Rays Emitted from Tin Plasma for Lithography Applications;284
7.7.1;1 Introduction;284
7.7.2;2 Simulation Results;285
7.7.3;3 Conclusions;289
7.7.4;4 Acknowledgements;290
7.7.5;References;290
7.8;Theoretical Investigation of Photo-pumping X-Ray Lasers Using Ka Line from Solid Target;291
7.8.1;1 Introduction;291
7.8.2;2 Monte-Carlo simulation and calculated result;292
7.8.3;3 Target design and pumping geometry;295
7.8.4;4 Summary;296
7.8.5;References;296
8;Part 6 - High Harmonic Generation (HHG);298
8.1;Coherent Water-Window X-Ray Generation by Phase- Matched High Harmonics in Neutral Media;299
8.1.1;1 Introduction;299
8.1.2;2 High-energy IR pulses by optical parametric amplifier;300
8.1.3;3 Water window soft x-ray from neutral harmonic media;302
8.1.4;References;306
8.2;Relativisitically Oscillating Mirrors Ò an Ultrabright Attosecond Source;307
8.2.1;1 Introduction;307
8.2.2;2 Background;308
8.2.3;3 Beam Quality Considerations;309
8.2.4;4 Experimental Results;312
8.2.5;Conclusions;314
8.2.6;References;314
8.3;Spectral Characteristics of Strong High-Harmonics Generated in a Two- Color Laser Field;315
8.3.1;1 Introduction;315
8.3.2;2 Experiment;316
8.3.3;3 Analysis and Discussion;317
8.3.4;4 Conclusion;321
8.3.5;References;321
8.4;Diffraction Limited Harmonic Emission from Laser Produced Plasmas;322
8.4.1;1 Introduction;322
8.4.2;2 Experiment;323
8.4.3;3 Angular distribution;325
8.4.4;4 Surface smoothing;326
8.4.5;5 Conclusion;326
8.4.6;References;327
9;Part 7 - XUV Optics and Applications of X-Ray Lasers;328
9.1;X-Ray Lasers as Probes of Plasma Parameters;329
9.1.1;1 Introduction;329
9.1.2;2 Soft x-ray plasma probing;330
9.1.3;3 Plasma thicknesses able to be probed by x-ray radiation;334
9.1.4;4 Measurements of laser ablation;334
9.1.5;5 Measurements of plasma opacity;335
9.1.6;6 Conclusion;337
9.1.7;Acknowledgements;338
9.1.8;References;338
9.2;Advances in Nanoscale Resolution Soft X-Ray Laser Microscopy;339
9.2.1;1 Introduction;339
9.2.2;2 Microscope Setup;340
9.2.3;3 Results;341
9.2.4;4 Conclusions;343
9.2.5;References;344
9.3;Experimental Diagnosis of Plasma Jets by Using X- Ray Laser;346
9.3.1;1 Introduction;346
9.3.2;2 Experiment;347
9.3.3;3 Comparison with Numerical Modeling;349
9.3.4;4 Conclusion;351
9.3.5;References;351
9.4;Soft X-Ray Holography with Wavelength Resolution;353
9.4.1;1 Introduction;353
9.4.2;2 Experiment;355
9.4.3;3 Image resolution assessment;357
9.4.4;4 Summary and conclusions;358
9.4.5;References;358
9.5;Ablation Measurements Using Ni-Like Ag X-Ray Laser Transmission;361
9.5.1;1 Introduction;361
9.5.2;2 Experiment;362
9.5.3;3 Laser Ablation Rate Measurements;365
9.5.4;4 Conclusions;368
9.5.5;Acknowledgements;368
9.5.6;References;368
9.6;High Sensitive Characterization of Microdomain Structures in PZN- PT ( 91/ 09) by Means of Coherent Soft X- Ray Laser Speckle;369
9.6.1;1 Introduction;369
9.6.2;2 Experiment and Results;370
9.6.3;3 Discussion;375
9.6.4;References;376
9.7;Warm Photoionized Plasmas Created by Soft X-Ray Laser Irradiation of Solid Targets;377
9.7.1;1 Introduction;377
9.7.2;2 Experimental Setup;378
9.7.3;3 Experiment and simulation results;379
9.7.4;4 Conclusions;384
9.7.5;References;384
9.8;Development of Multilayer Optics in EUV, Soft X-Ray and X- Ray Range at IPOE;386
9.8.1;1 Introduction;386
9.8.2;2 Periodic Multilayers;387
9.8.3;3 Non-periodic Multilayers;390
9.8.4;4 Summary;392
9.8.5;Acknowledgements;393
9.8.6;References;393
9.9;Highly Efficient Surface Modification of Solids by Dual Action of XUV/ Vis- NIR Laser Pulses;395
9.9.1;1 Introduction;395
9.9.2;2 Experimental setup;396
9.9.3;3 Results;397
9.9.4;4 Discussion;399
9.9.5;5 Conclusion;400
9.9.6;References;400
9.10;Strand Breaks in DNA Samples Induced with LASERIX;402
9.10.1;1 Motivation;402
9.10.2;2 Experiment;404
9.10.3;3 Results and conclusion;407
9.10.4;Acknowledgment;408
9.10.5;References;408
9.11;High Resolution X-Ray Laser Backlighting of Plasmas Using Spatial Filtering Technique;409
9.11.1;1 Experimental setup;409
9.11.2;2 Spatial filtering for enhancing contrast in XRL plasma probing;410
9.11.3;3 Results;412
9.11.4;References;417
9.12;Development of Soft X-Ray Fourier Transform Holography with Fresnel Zone Plate;418
9.12.1;1 Introduction;418
9.12.2;2 Experiment;419
9.12.3;3 Summary;421
9.12.4;Acknowledgement;423
9.12.5;References;423
9.13;Lensless Imaging Using Table-Top Soft X-Ray Lasers and High Harmonics Sources Reaching 70 nm Resolution;424
9.13.1;1 Introduction;424
9.13.2;2 Experimental Setup and Sample;425
9.13.3;3 Results and Discussion;426
9.13.4;4 Conclusions;427
9.13.5;References;429
9.14;Gas Phase Study of The Reactivity of Optical Coating Materials with Hydrocarbons Using a Compact Soft X- Ray Laser;430
9.14.1;1 Introduction;430
9.14.2;2 Results;431
9.14.3;3 Conclusions;434
9.14.4;Acknowledgments;435
9.14.5;References;435
9.15;Gas Phase Studies of Catalytic Processes Involving Vmon Clusters and their Reaction with Alcohols, Alkenes, Nox, and Nh3 Using a Desk- Top Size Soft X- Ray Laser;436
9.15.1;1 Introduction;436
9.15.2;2 Experimental Procedures;437
9.15.3;3 Results;438
9.15.4;Acknowledgments;441
9.15.5;References;441
9.16;Time-of-Flight Measurements of Ion and Electron from Xenon Clusters Irradiated with a Soft X- Ray Laser Pulse;443
9.16.1;1 Introduction;443
9.16.2;2 Experimental Setup;444
9.16.3;3 Results and Discussion;445
9.16.4;4 Summary;448
9.16.5;Acknowledgements;448
9.16.6;References;449
9.17;Calibration of a High Resolution Soft X-Ray Spectrometer;450
9.17.1;1 Introduction;450
9.17.2;2 Experimental Description;451
9.17.3;3 Experimental Results;454
9.17.4;References;455
9.18;XUV Probing as a Diagnostic of Rayleigh-Taylor Instability Growth;457
9.18.1;1 Introduction;457
9.18.2;2 POLLUX code and Ionised Material Package (IMP) opacity data;458
9.18.3;3 Model parameters;459
9.18.4;4 Simulated profiles;459
9.18.5;5 Conclusion;462
9.18.6;Acknowledgements;462
9.18.7;References;462
9.19;Line Focus Geometry for Grazing Incidence Pumped X- Ray Lasers;463
9.19.1;1 Introduction;463
9.19.2;2 Tilted off-axis mirrors;463
9.19.3;3 Parabolic mirrors;465
9.19.4;4 Conclusion;468
9.19.5;References;469
9.20;Resolution and Feature Size Assessment in Soft X-Ray Microscopy Images;470
9.20.1;1 Introduction;470
9.20.2;2 Nanoscale images at .= 13.2 nm;471
9.20.3;3 Description of the algorithm;472
9.20.4;References;474
9.21;An Approach to the Generation of Uniform Line Foci for Use in X- Ray Laser Experiments;476
9.21.1;1 Introduction;476
9.21.2;2 Optical Systems for Achieving Line-Foci;477
9.21.3;3 Design of the Apertures;477
9.21.4;4 Apertures Calculated for the QUB X-Ray Laser Set-up.;478
9.21.5;5 Advantages and Disadvantages of Using Apertures;480
9.21.6;Conclusions;480
9.21.7;References;481
9.22;Interferometric Lithography with a Desk-Top Size Soft X- Ray Laser;482
9.22.1;1 Introduction;482
9.22.2;2 ADI design;483
9.22.3;3 Experimental details;484
9.22.4;4 Results;485
9.22.5;5 Summary;486
9.22.6;References;487
9.23;Time-Resolved Fluorescence Spectrum of Wide-Gap Semiconductors Excited by 13.9 nm X- Ray Laser;488
9.23.1;1 Introduction;488
9.23.2;2 Experimental;489
9.23.3;3 Results;490
9.23.4;Acknowledgements;492
9.23.5;References;492
10;Part 8 - Alternative Approaches for Sources of Bright X-Rays;493
10.1;Application of Extremely Bright and Coherent Soft and Hard X- Ray Free- Electron Laser Radiation;494
10.1.1;1 Introduction;494
10.1.2;2 Requirements of scientific applications;495
10.1.3;3 Description of x-ray FEL facilities;497
10.1.4;4 Conclusions;503
10.1.5;References;504
10.2;Design Study of Compact Thomson X-Ray Sources for Material and Life Sciences Applications;505
10.2.1;1 Introduction;505
10.2.2;2 Overview and motivation;506
10.2.3;3 Quasi CW mode;509
10.2.4;4 Applications of QCW LEXG;511
10.2.5;5 Pulsed operation mode for life sciences. Coronary angiography;512
10.2.6;6 Discussion and summary;515
10.2.7;References;517
10.3;An Attempt to Generate an Inner-Shell Photo-Ionisation Pumped X- Ray Laser Using the ASTRA Laser at RAL;520
10.3.1;1 Introduction;520
10.3.2;2 Experimental Layout;521
10.3.3;3 Results and Discussion;522
10.3.4;5 Conclusions;525
10.3.5;References;525
10.4;Electron Self-Injection and Radiation in the Laser Plasma Accelerator;526
10.4.1;1 Introduction;526
10.4.2;2 2D PIC simulation;527
10.4.3;3 Model;528
10.4.4;4 Betatron radiation;530
10.4.5;References;531
10.5;Emission Spectroscopy from an XUV Laser Irradiated Solid Target;532
10.5.1;1 Introduction;532
10.5.2;2 Experimental Layout;533
10.5.3;3 Results and Discussion;535
10.5.4;4 Conclusions;537
10.5.5;Acknowledgements;538
10.5.6;References;538
10.6;Innershell X-Ray Laser in Sodium Vapor: Final Steps Towards Experimental Verification;539
10.6.1;1 Introduction;539
10.6.2;2 Physical principles;539
10.6.3;3 Experimental setup;540
10.6.4;4 Modelling of population inversion;541
10.6.5;5 Conclusion;543
10.6.6;References;544



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.