E-Book, Englisch, Band 130, 562 Seiten
Lewis / Riley X-Ray Lasers 2008
2009
ISBN: 978-1-4020-9924-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the 11th International Conference on X-Ray Lasers, 17-22 August 2008, Belfast, UK
E-Book, Englisch, Band 130, 562 Seiten
Reihe: Springer Proceedings in Physics
ISBN: 978-1-4020-9924-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
The 11th International Conference on X-Ray Lasers had contributions in the following topical areas: Transient Collisional X-Ray Lasers, Table-Top High Repetition Rate X-Ray Lasers, Optical-Field Ionised (OFI) X-Ray Lasers, Theory and Simulation of X-Ray Lasers, High Order Harmonic Generation, XUV Optics and X-Ray Laser Applications, Capillary Discharge X-Ray Lasers, Alternative Sources of coherent XUV Radiation. The proceedings of this conference constitute a comprehensive source of reference for scientists involved in researching the development and application of coherent X-Ray sources.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Part 1 - Progress in X-Ray Laser Facilities and Infrastructures;17
3.1;Recent Progress in X-Ray Laser Research in JAEA;18
3.1.1;1 Introduction;18
3.1.2;2 New Driver Laser System: TOPAZ;19
3.1.3;3 Application of the 13.9nm laser;20
3.1.4;4 Improvement of Performance of X-ray laser;22
3.2;Recent Advances on LASERIX Facility: Development of XUV Sources System and Applications. Perspectives from 2008 to 2010.;28
3.2.1;1 Introduction and context;28
3.2.2;2 Development of XUV sources;31
3.2.3;3 Use of XUV sources for applications;34
3.2.4;4 Conclusion and perspectives;37
3.2.5;Acknowledgment;37
3.2.6;References;37
3.3;Recent Progress in Grazing-Incidence-Pumped X-Ray Lasers at Uni- BE;38
3.3.1;1 Introduction;38
3.3.2;2 Experimental Setup;39
3.3.3;3 Results for Sn (and Pd) lasing;41
3.3.4;4 Results for Sb lasing;44
3.3.5;Acknowledgements;45
3.3.6;References;45
3.4;Review on Recent High Intensity Physics Experiments Relevant to X- Ray and Quantum Beam Generation at JAEA;47
3.4.1;1 Introduction;47
3.4.2;2 Relativistic Flying Mirror for a Tunable Coherent X-ray Source;48
3.4.3;3 Experimental Study on femto-second laser driven soft X- ray source;51
3.4.4;4 Laser driven multiple quantum beam generation using a thin foil;53
3.4.5;References;56
3.5;Towards an 100 Hz X-Ray Laser Station;57
3.5.1;1 Introduction;57
3.5.2;2 Pump Laser Design;58
3.5.3;3 X-Ray Laser in GRIP geometry;64
3.5.4;4 Summary and outlook;65
3.5.5;Acknowledgement;65
3.5.6;References;65
3.6;Versatile High-Energy and Short-Pulse Operation of PHELIX;67
3.6.1;1 The PHELIX laser system;67
3.6.2;2 Experimental set-up for pumping a short wavelength x-ray laser;69
3.6.3;3 Conclusion;71
3.6.4;References;72
3.7;Central Laser Facility High Power Laser Capabilities Applied to X- Ray Laser Science;73
3.7.1;1 Introduction;73
3.7.2;2 High Power Laser Systems;74
3.7.3;References;76
3.8;TARANIS: A Pump Source for X-Ray Lasers;78
3.8.1;1 Introduction;78
3.8.2;2 Laser System;79
3.8.3;3 The QUB X-Ray Laser;83
3.8.4;References;83
3.9;Photon Frontier Network;84
3.9.1;1 Introduction;84
3.9.2;2 Historical Background;85
3.9.3;3 Framework of Photon Frontier Network;85
3.9.4;4 Advanced Photon Science Alliance;87
3.9.5;5 Consortium for Photon Science and Technology: C-PhoST;89
3.9.6;6 Conclusion;90
3.9.7;Acknowledgement;90
3.9.8;References;91
4;Part 2 - Transient Collisional X-Ray Lasers;92
4.1;Grazing Incidence Pumping (GRIP): Single- vs. Double- Pulse Arrangement;93
4.1.1;1 Introduction;93
4.1.2;2 Analysis of the experiment;94
4.1.3;3 Modelling of the experiment;95
4.1.4;4 Conclusions;100
4.1.5;Acknowledgments;101
4.1.6;References;101
4.2;Generation of the Circularly Polarized X-Ray Laser Using the Pulse- Power Magnet;111
4.2.1;1 Introduction;111
4.2.2;2 Circularly polarized XRL by use of the external magnetic field;112
4.2.3;3 Experiment of the extraction of the circularly polarized XRL;113
4.2.4;4 Summary;116
4.2.5;Acknowledgements;116
4.2.6;References;117
4.3;Gain Saturation of the Ni-like Antimony Laser at 11.4 nm in Grazing- Incidence Pumping Geometry;118
4.3.1;1 Introduction;118
4.3.2;2 Experimental setup;119
4.3.3;3 Experiment Results;119
4.3.4;4 Discussion of the roll-off effect;121
4.3.5;5 Data interpretation;122
4.3.6;References;123
4.4;Temporal Coherence and Spectral Line Shape of a GRIP Transient X- Ray Laser;125
4.4.1;1 Introduction;125
4.4.2;2 Experimental setup;126
4.4.3;3 Source stability;128
4.4.4;4 Experimental results;129
4.4.5;5 Conclusion;131
4.4.6;References:;131
5;Part 3 - High Repetition Rate X-Ray Lasers;132
5.1;High Coherence Injection-Seeded Table-Top Soft X-Ray Lasers at Wavelengths Down to 13.2 nm;133
5.1.1;1 Introduction;133
5.1.2;2 Demonstration of injection seeded soft x-ray lasers at wavelengths below 20 nm;134
5.1.3;3 Spatial coherence measurements;138
5.1.4;4 Pulsewidth measurements;139
5.1.5;5 Conclusions;140
5.1.6;References;140
5.2;Characterization of a Seeded Optical-Field Ionized Collisional Soft X- Ray Laser;142
5.2.1;1 Introduction;142
5.2.2;2 Experimental set up;144
5.2.3;3 Experimental results;145
5.2.4;4 Conclusion;148
5.2.5;References;148
5.3;Investigation on the Spatial Properties of Silver X-Ray Laser Using GRIP Schemes;150
5.3.1;1 Introduction;150
5.3.2;2 Conventional GRIP vs. the GRIP geometry applying a single-profiled pulse;151
5.3.3;3 Spatial distribution of the output beam of silver x-ray laser;153
5.3.4;4 Spatial coherence of silver x-ray laser;155
5.3.5;5 Summary;158
5.3.6;Acknowledgement;159
5.3.7;References;159
5.4;Spatial Filtering of High Order Harmonics by an OFI Plasma Amplifier;160
5.4.1;1 Introduction;160
5.4.2;2 Experimental setup;161
5.4.3;3 Far field pattern;161
5.4.4;4 Wavefront measurement;162
5.4.5;5 Reconstructed sources;164
5.4.6;6 Spatial filtering simulation;164
5.4.7;7 Conclusion;166
5.4.8;References;167
5.5;New Driver Laser System for Double Target X-Ray Lasers at JAEA;168
5.5.1;1 Introduction;168
5.5.2;2 System Configuration of TOPAZ;169
5.5.3;3 XRL generation using TOPAZ;171
5.5.4;4 Summary;171
5.5.5;Acknowledgement;172
5.5.6;References;172
6;Part 4 - Optical-Field-Ionised (OFI) X-Ray Lasers;174
6.1;Toward Ultraintense Compact RBS Pump for Recombination 3.4 nm Laser via OFI;175
6.1.1;1 Introduction;175
6.1.2;2 Single and Double Pass Raman Backscattering Amplifier and Compressor;176
6.1.3;3 X-Ray Laser: Computer “Prescription” and Experimental Arrangement for Gain Generation in “Water Window” at 3.4nm;183
6.1.4;Acknowledgments;186
6.1.5;References;186
6.2;High Brightness Optical-Field-Ionization X-Ray Lasers Driven in Plasma Waveguides;188
6.2.1;1 Introduction;188
6.2.2;2 Experimental Setup;190
6.2.3;3 Results and Discussion;192
6.2.4;References;197
6.3;Temporal Coherence and Spectral Linewidth of a Seeded Soft X- Ray Laser Pulse;198
6.3.1;1 Introduction;198
6.3.2;2 Experimental device;199
6.3.3;3 Results;201
6.3.4;4 Discussion;201
6.3.5;5 Conclusion;203
6.3.6;Acknowledgments;203
6.3.7;References;203
7;Part 5 - Theory and Simulations;204
7.1;Advances in Understanding the Anomalous Dispersion of Plasmas in the X- Ray Regime;215
7.1.1;1 Introduction;215
7.1.2;2 Analysis of Interferometer Experiments;216
7.1.3;3 Finding Anomalous Dispersion in Ne and Na Plasmas;217
7.1.4;4 Finding Anomalous Dispersion in Ce and Yb Plasmas;220
7.1.5;5 Modeling of Carbon Plasmas at Higher Energy;222
7.1.6;6 Conclusions;223
7.1.7;Acknowledgements;223
7.1.8;References;223
7.2;Recent Developments on Seeded or Unseeded Transient X- Ray Lasers;225
7.2.1;1 Introduction;225
7.2.2;2 Simulations of a seeded X-ray laser with the COLAX code;226
7.2.3;3 Role of the time and level of injection;229
7.2.4;4 Duration of the amplified HHG;231
7.2.5;5 Conclusions and future work;232
7.2.6;References;233
7.3;Influence of the number of atomic levels on the modelling of collisional X- ray lasers;234
7.3.1;1 Introduction;234
7.3.2;2 Theoretical modelling of a Ne-like Zinc laser plasma;235
7.3.3;3 Comparison with experiment;236
7.3.4;4 Strongly coupled levels in High Harmonic amplification;238
7.3.5;5 Conclusion and perspectives;239
7.3.6;Acknowledgement;240
7.3.7;References;240
7.4;Modelling of Capillary Z-Pinch Recombination Pumping of Hydrogen- Like Ion EUV Lasers;242
7.4.1;1 Introduction;242
7.4.2;2 Computer Modelling of Laboratory Experiments;243
7.4.3;3 Boron Pinching Plasma;243
7.4.4;4 Influence of Capillary Wall Ablation on Plasma Evolution;247
7.4.5;5 Conclusion;249
7.4.6;Acknowledgement;249
7.4.7;References;249
7.5;Modeling of an Ultra-Short X-Ray Laser Pulse Amplification Through an Optical- Field- Ionized Gas Using a Maxwell- Bloch Treatment;258
7.5.1;1 Introduction;258
7.5.2;2 Modeling;259
7.5.3;3 X-ray Amplification Results;261
7.5.4;4 Conclusion;264
7.5.5;References;265
7.6;Effects of Inhomogeneous Incident Line Focus on 2D Hydrodynamic Behaviour of X- Ray Laser Plasma on Slab;266
7.6.1;1 Introduction;266
7.6.2;2 Inhomogeneity of line focus;267
7.6.3;3 Model equations;268
7.6.4;4 Comparison with 1D similar solution;269
7.6.5;5 Results discussion;269
7.6.6;6 Conclusions;273
7.6.7;Reference;273
7.7;Conversion Efficiency Calculations for Soft X-Rays Emitted from Tin Plasma for Lithography Applications;284
7.7.1;1 Introduction;284
7.7.2;2 Simulation Results;285
7.7.3;3 Conclusions;289
7.7.4;4 Acknowledgements;290
7.7.5;References;290
7.8;Theoretical Investigation of Photo-pumping X-Ray Lasers Using Ka Line from Solid Target;291
7.8.1;1 Introduction;291
7.8.2;2 Monte-Carlo simulation and calculated result;292
7.8.3;3 Target design and pumping geometry;295
7.8.4;4 Summary;296
7.8.5;References;296
8;Part 6 - High Harmonic Generation (HHG);298
8.1;Coherent Water-Window X-Ray Generation by Phase- Matched High Harmonics in Neutral Media;299
8.1.1;1 Introduction;299
8.1.2;2 High-energy IR pulses by optical parametric amplifier;300
8.1.3;3 Water window soft x-ray from neutral harmonic media;302
8.1.4;References;306
8.2;Relativisitically Oscillating Mirrors Ò an Ultrabright Attosecond Source;307
8.2.1;1 Introduction;307
8.2.2;2 Background;308
8.2.3;3 Beam Quality Considerations;309
8.2.4;4 Experimental Results;312
8.2.5;Conclusions;314
8.2.6;References;314
8.3;Spectral Characteristics of Strong High-Harmonics Generated in a Two- Color Laser Field;315
8.3.1;1 Introduction;315
8.3.2;2 Experiment;316
8.3.3;3 Analysis and Discussion;317
8.3.4;4 Conclusion;321
8.3.5;References;321
8.4;Diffraction Limited Harmonic Emission from Laser Produced Plasmas;322
8.4.1;1 Introduction;322
8.4.2;2 Experiment;323
8.4.3;3 Angular distribution;325
8.4.4;4 Surface smoothing;326
8.4.5;5 Conclusion;326
8.4.6;References;327
9;Part 7 - XUV Optics and Applications of X-Ray Lasers;328
9.1;X-Ray Lasers as Probes of Plasma Parameters;329
9.1.1;1 Introduction;329
9.1.2;2 Soft x-ray plasma probing;330
9.1.3;3 Plasma thicknesses able to be probed by x-ray radiation;334
9.1.4;4 Measurements of laser ablation;334
9.1.5;5 Measurements of plasma opacity;335
9.1.6;6 Conclusion;337
9.1.7;Acknowledgements;338
9.1.8;References;338
9.2;Advances in Nanoscale Resolution Soft X-Ray Laser Microscopy;339
9.2.1;1 Introduction;339
9.2.2;2 Microscope Setup;340
9.2.3;3 Results;341
9.2.4;4 Conclusions;343
9.2.5;References;344
9.3;Experimental Diagnosis of Plasma Jets by Using X- Ray Laser;346
9.3.1;1 Introduction;346
9.3.2;2 Experiment;347
9.3.3;3 Comparison with Numerical Modeling;349
9.3.4;4 Conclusion;351
9.3.5;References;351
9.4;Soft X-Ray Holography with Wavelength Resolution;353
9.4.1;1 Introduction;353
9.4.2;2 Experiment;355
9.4.3;3 Image resolution assessment;357
9.4.4;4 Summary and conclusions;358
9.4.5;References;358
9.5;Ablation Measurements Using Ni-Like Ag X-Ray Laser Transmission;361
9.5.1;1 Introduction;361
9.5.2;2 Experiment;362
9.5.3;3 Laser Ablation Rate Measurements;365
9.5.4;4 Conclusions;368
9.5.5;Acknowledgements;368
9.5.6;References;368
9.6;High Sensitive Characterization of Microdomain Structures in PZN- PT ( 91/ 09) by Means of Coherent Soft X- Ray Laser Speckle;369
9.6.1;1 Introduction;369
9.6.2;2 Experiment and Results;370
9.6.3;3 Discussion;375
9.6.4;References;376
9.7;Warm Photoionized Plasmas Created by Soft X-Ray Laser Irradiation of Solid Targets;377
9.7.1;1 Introduction;377
9.7.2;2 Experimental Setup;378
9.7.3;3 Experiment and simulation results;379
9.7.4;4 Conclusions;384
9.7.5;References;384
9.8;Development of Multilayer Optics in EUV, Soft X-Ray and X- Ray Range at IPOE;386
9.8.1;1 Introduction;386
9.8.2;2 Periodic Multilayers;387
9.8.3;3 Non-periodic Multilayers;390
9.8.4;4 Summary;392
9.8.5;Acknowledgements;393
9.8.6;References;393
9.9;Highly Efficient Surface Modification of Solids by Dual Action of XUV/ Vis- NIR Laser Pulses;395
9.9.1;1 Introduction;395
9.9.2;2 Experimental setup;396
9.9.3;3 Results;397
9.9.4;4 Discussion;399
9.9.5;5 Conclusion;400
9.9.6;References;400
9.10;Strand Breaks in DNA Samples Induced with LASERIX;402
9.10.1;1 Motivation;402
9.10.2;2 Experiment;404
9.10.3;3 Results and conclusion;407
9.10.4;Acknowledgment;408
9.10.5;References;408
9.11;High Resolution X-Ray Laser Backlighting of Plasmas Using Spatial Filtering Technique;409
9.11.1;1 Experimental setup;409
9.11.2;2 Spatial filtering for enhancing contrast in XRL plasma probing;410
9.11.3;3 Results;412
9.11.4;References;417
9.12;Development of Soft X-Ray Fourier Transform Holography with Fresnel Zone Plate;418
9.12.1;1 Introduction;418
9.12.2;2 Experiment;419
9.12.3;3 Summary;421
9.12.4;Acknowledgement;423
9.12.5;References;423
9.13;Lensless Imaging Using Table-Top Soft X-Ray Lasers and High Harmonics Sources Reaching 70 nm Resolution;424
9.13.1;1 Introduction;424
9.13.2;2 Experimental Setup and Sample;425
9.13.3;3 Results and Discussion;426
9.13.4;4 Conclusions;427
9.13.5;References;429
9.14;Gas Phase Study of The Reactivity of Optical Coating Materials with Hydrocarbons Using a Compact Soft X- Ray Laser;430
9.14.1;1 Introduction;430
9.14.2;2 Results;431
9.14.3;3 Conclusions;434
9.14.4;Acknowledgments;435
9.14.5;References;435
9.15;Gas Phase Studies of Catalytic Processes Involving Vmon Clusters and their Reaction with Alcohols, Alkenes, Nox, and Nh3 Using a Desk- Top Size Soft X- Ray Laser;436
9.15.1;1 Introduction;436
9.15.2;2 Experimental Procedures;437
9.15.3;3 Results;438
9.15.4;Acknowledgments;441
9.15.5;References;441
9.16;Time-of-Flight Measurements of Ion and Electron from Xenon Clusters Irradiated with a Soft X- Ray Laser Pulse;443
9.16.1;1 Introduction;443
9.16.2;2 Experimental Setup;444
9.16.3;3 Results and Discussion;445
9.16.4;4 Summary;448
9.16.5;Acknowledgements;448
9.16.6;References;449
9.17;Calibration of a High Resolution Soft X-Ray Spectrometer;450
9.17.1;1 Introduction;450
9.17.2;2 Experimental Description;451
9.17.3;3 Experimental Results;454
9.17.4;References;455
9.18;XUV Probing as a Diagnostic of Rayleigh-Taylor Instability Growth;457
9.18.1;1 Introduction;457
9.18.2;2 POLLUX code and Ionised Material Package (IMP) opacity data;458
9.18.3;3 Model parameters;459
9.18.4;4 Simulated profiles;459
9.18.5;5 Conclusion;462
9.18.6;Acknowledgements;462
9.18.7;References;462
9.19;Line Focus Geometry for Grazing Incidence Pumped X- Ray Lasers;463
9.19.1;1 Introduction;463
9.19.2;2 Tilted off-axis mirrors;463
9.19.3;3 Parabolic mirrors;465
9.19.4;4 Conclusion;468
9.19.5;References;469
9.20;Resolution and Feature Size Assessment in Soft X-Ray Microscopy Images;470
9.20.1;1 Introduction;470
9.20.2;2 Nanoscale images at .= 13.2 nm;471
9.20.3;3 Description of the algorithm;472
9.20.4;References;474
9.21;An Approach to the Generation of Uniform Line Foci for Use in X- Ray Laser Experiments;476
9.21.1;1 Introduction;476
9.21.2;2 Optical Systems for Achieving Line-Foci;477
9.21.3;3 Design of the Apertures;477
9.21.4;4 Apertures Calculated for the QUB X-Ray Laser Set-up.;478
9.21.5;5 Advantages and Disadvantages of Using Apertures;480
9.21.6;Conclusions;480
9.21.7;References;481
9.22;Interferometric Lithography with a Desk-Top Size Soft X- Ray Laser;482
9.22.1;1 Introduction;482
9.22.2;2 ADI design;483
9.22.3;3 Experimental details;484
9.22.4;4 Results;485
9.22.5;5 Summary;486
9.22.6;References;487
9.23;Time-Resolved Fluorescence Spectrum of Wide-Gap Semiconductors Excited by 13.9 nm X- Ray Laser;488
9.23.1;1 Introduction;488
9.23.2;2 Experimental;489
9.23.3;3 Results;490
9.23.4;Acknowledgements;492
9.23.5;References;492
10;Part 8 - Alternative Approaches for Sources of Bright X-Rays;493
10.1;Application of Extremely Bright and Coherent Soft and Hard X- Ray Free- Electron Laser Radiation;494
10.1.1;1 Introduction;494
10.1.2;2 Requirements of scientific applications;495
10.1.3;3 Description of x-ray FEL facilities;497
10.1.4;4 Conclusions;503
10.1.5;References;504
10.2;Design Study of Compact Thomson X-Ray Sources for Material and Life Sciences Applications;505
10.2.1;1 Introduction;505
10.2.2;2 Overview and motivation;506
10.2.3;3 Quasi CW mode;509
10.2.4;4 Applications of QCW LEXG;511
10.2.5;5 Pulsed operation mode for life sciences. Coronary angiography;512
10.2.6;6 Discussion and summary;515
10.2.7;References;517
10.3;An Attempt to Generate an Inner-Shell Photo-Ionisation Pumped X- Ray Laser Using the ASTRA Laser at RAL;520
10.3.1;1 Introduction;520
10.3.2;2 Experimental Layout;521
10.3.3;3 Results and Discussion;522
10.3.4;5 Conclusions;525
10.3.5;References;525
10.4;Electron Self-Injection and Radiation in the Laser Plasma Accelerator;526
10.4.1;1 Introduction;526
10.4.2;2 2D PIC simulation;527
10.4.3;3 Model;528
10.4.4;4 Betatron radiation;530
10.4.5;References;531
10.5;Emission Spectroscopy from an XUV Laser Irradiated Solid Target;532
10.5.1;1 Introduction;532
10.5.2;2 Experimental Layout;533
10.5.3;3 Results and Discussion;535
10.5.4;4 Conclusions;537
10.5.5;Acknowledgements;538
10.5.6;References;538
10.6;Innershell X-Ray Laser in Sodium Vapor: Final Steps Towards Experimental Verification;539
10.6.1;1 Introduction;539
10.6.2;2 Physical principles;539
10.6.3;3 Experimental setup;540
10.6.4;4 Modelling of population inversion;541
10.6.5;5 Conclusion;543
10.6.6;References;544




