Lewicka | Calculus of Variations on Thin Prestressed Films | Buch | 978-3-031-17494-0 | sack.de

Buch, Englisch, Band 101, 448 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 852 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

Lewicka

Calculus of Variations on Thin Prestressed Films

Asymptotic Methods in Elasticity
2023
ISBN: 978-3-031-17494-0
Verlag: Springer International Publishing

Asymptotic Methods in Elasticity

Buch, Englisch, Band 101, 448 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 852 g

Reihe: Progress in Nonlinear Differential Equations and Their Applications

ISBN: 978-3-031-17494-0
Verlag: Springer International Publishing


This monograph considers the analytical and geometrical questions emerging from the study of thin elastic films that exhibit residual stress at free equilibria.  It provides the comprehensive account, the details and background on the most recent results in the combined research perspective on the classical themes: in Differential Geometry – that of isometrically embedding a shape with a given metric in an ambient space of possibly different dimension, and in Calculus of Variations – that of minimizing non-convex energy functionals parametrized by a quantity in whose limit the functionals become degenerate.
Prestressed thin films are present in many contexts and applications, such as: growing tissues, plastically strained sheets, engineered swelling or shrinking gels, petals and leaves of flowers, or atomically thin graphene layers.  While the related questions about the physical basis for shape formation lie at the intersection of biology, chemistry and physics, fundamentally they are of the analytical and geometrical character, and can be tackled using the techniques of the dimension reduction, laid out in this book.
The text will appeal to mathematicians and graduate students working in the fields of Analysis, Calculus of Variations, Partial Differential Equations, and Applied Math.  It will also be of interest to researchers and graduate students in Engineering (especially fields related to Solid Mechanics and Materials Science), who would like to gain the modern mathematical insight and learn the necessary tools.
Lewicka Calculus of Variations on Thin Prestressed Films jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Part I: Tools in Mathematical Analysis.- G-Convergence.- Korn's Inequality.- Friesecke-James-Müller’s Inequality.- Part II: Dimension Reduction in Classical Elasticity.- Limiting Theories for Elastic Plates and Shells: Nonlinear Bending.- Limiting Theories for Elastic Plates and Shells: Sublinear and Linear.- Linear Theories for Elastic Plates: Linearized Bending.- Infinite Hierarchy of Elastic Shell Models.- Limiting Theories on Elastic Elliptic Shells.- Limiting Theories on Elastic Developable Shells.- Part III: Dimension Reduction in Prestressed Elasticity.- Limiting Theories for Prestressed Films: Nonlinear Bending.- Limiting Theories for Prestressed Films: Von Kármán-like Theory.- Infinite Hierarchy of Limiting Theories for Prestressed Films.- Limiting Theories for Weakly Prestressed Films.- Terminology and Notation.- Index. 


Marta Lewicka is a mathematician specializing in the fields of Analysis and Partial Differential Equations. She has contributed results in the theory of hyperbolic systems of conservation laws, fluid dynamics, calculus of variations, nonlinear potential theory, and differential games. She is a Fellow of the American Mathematical Society and holds Professor’s scientific title awarded by the President of the Republic of Poland. She works at the University of Pittsburgh, USA.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.