Buch, Englisch, Band 21, 311 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 493 g
Buch, Englisch, Band 21, 311 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 493 g
Reihe: Nonlinear Systems and Complexity
ISBN: 978-3-319-86313-9
Verlag: Springer International Publishing
This book presents recent developments in nonlinear dynamics and physics with an emphasis on complex systems. The contributors provide recent theoretic developments and new techniques to solve nonlinear dynamical systems and help readers understand complexity, stochasticity, and regularity in nonlinear dynamical systems. This book covers integro-differential equation solvability, Poincare recurrences in ergodic systems, orientable horseshoe structure, analytical routes of periodic motions to chaos, grazing on impulsive differential equations, from chaos to order in coupled oscillators, and differential-invariant solutions for automorphic systems, inequality under uncertainty.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik EDV | Informatik Informatik Berechenbarkeitstheorie, Komplexitätstheorie
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
Solvability of Some Integro-Di?erential Equations with Anomalous Di?usion.- Poincare Recurrences in Ergodic Systems Without Mixing.- Success, Hierarchy, and Inequality under Uncertainty.- Grazing in Impulsive Differential Equations.- On Local Topological Classi?cation of Two-dimensional Orientable, Nonorientable and Half-orientable Horseshoes.- From Chaos to Order in a Ring of Coupled Oscillator Swith Frequency Mismatch.- Dynamics of some nonlinear meromorphic functions.- Dynamics of oscillatory networks with pulse delayed coupling.- Bifurcation trees of period-3 motions to chaos in a time-delayed Duffing Oscillator.- Travelable Period-1 Motions to Chaos in a Periodically Excited Pendulum.- Automorphic systems and differential-invariant solutions.