Leonardis / Ricci / Varol | Computer Vision - ECCV 2024 | Buch | 978-3-031-73234-8 | sack.de

Buch, Englisch, 502 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 879 g

Reihe: Lecture Notes in Computer Science

Leonardis / Ricci / Varol

Computer Vision - ECCV 2024

18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part IV
2025
ISBN: 978-3-031-73234-8
Verlag: Springer Nature Switzerland

18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part IV

Buch, Englisch, 502 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 879 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-73234-8
Verlag: Springer Nature Switzerland


The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024.

The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.

Leonardis / Ricci / Varol Computer Vision - ECCV 2024 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation.- Mahalanobis Distance-based Multi-view Optimal Transport for Multi-view Crowd Localization.- RAW-Adapter: Adapting Pretrained Visual Model to Camera RAW Images.- SLEDGE: Synthesizing Driving Environments with Generative Models and Rule-Based Traffic.- AFreeCA: Annotation-Free Counting for All.- Adversarially Robust Distillation by Reducing the Student-Teacher Variance Gap.- LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation.- Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion.- Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration.- GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation.- PromptCCD: Learning Gaussian Mixture Prompt Pool for Continual Category Discovery.- Sapiens: Foundation for Human Vision Models.- Linearly Controllable GAN: Unsupervised Feature Categorization and Decomposition for Image Generation and Manipulation.- Generating Human Interaction Motions in Scenes with Text Control.- NOVUM: Neural Object Volumes for Robust Object Classification.- Align before Collaborate: Mitigating Feature Misalignment for Robust Multi-Agent Perception.- HIMO: A New Benchmark for Full-Body Human Interacting with Multiple Objects.- SAIR: Learning Semantic-aware Implicit Representation.- ColorMNet: A Memory-based Deep Spatial-Temporal Feature Propagation Network for Video Colorization.- UNIC: Universal Classification Models via Multi-teacher Distillation.- Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation.- Eliminating Warping Shakes for Unsupervised Online Video Stitching.- Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models.- Merlin: Empowering Multimodal LLMs with Foresight Minds.- ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders.- E.T. the Exceptional Trajectory: Text-to-camera-trajectory generation with character awareness.- OphNet: A Large-Scale Video Benchmark for Ophthalmic Surgical Workflow Understanding.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.