Leonardis / Ricci / Varol | Computer Vision - ECCV 2024 | Buch | 978-3-031-72654-5 | sack.de

Buch, Englisch, Band 15077, 455 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 814 g

Reihe: Lecture Notes in Computer Science

Leonardis / Ricci / Varol

Computer Vision - ECCV 2024

18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XIX
2025
ISBN: 978-3-031-72654-5
Verlag: Springer Nature Switzerland

18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part XIX

Buch, Englisch, Band 15077, 455 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 814 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-72654-5
Verlag: Springer Nature Switzerland


The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024.

The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.

Leonardis / Ricci / Varol Computer Vision - ECCV 2024 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation.- AID-AppEAL: Automatic Image Dataset and Algorithm for Content Appeal Enhancement and Assessment Labeling.- SEDiff: Structure Extraction for Domain Adaptive Depth Estimation via Denoising Diffusion Models.- Quantized Prompt for Efficient Generalization of Vision-Language Models.- Online Temporal Action Localization with Memory-Augmented Transformer.- Efficient Cascaded Multiscale Adaptive Network for Image Restoration.- MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model.- Occlusion-Aware Seamless Segmentation.- OpenKD: Opening Prompt Diversity for Zero- and Few-shot Keypoint Detection.- Referring Atomic Video Action Recognition.- Agent3D-Zero:  An Agent for Zero-shot 3D Understanding.- Stream Query Denoising for Vectorized HD-Map Construction.- SAGS: Structure-Aware 3D Gaussian Splatting.- Spherical Linear Interpolation and Text-Anchoring for Zero-shot Composed Image Retrieval.- OneRestore: A Universal Restoration Framework for Composite Degradation.- Beat-It: Beat-Synchronized Multi-Condition 3D Dance Generation.- SkyMask: Attack-agnostic Robust Federated Learning with Fine-grained Learnable Masks.- Bag of Tricks to Boost Adversarial Transferability.- RePOSE: 3D Human Pose Estimation via Spatio-Temporal Depth Relational Consistency.- Pixel-GS Density Control with Pixel-aware Gradient for 3D Gaussian Splatting.- WorldPose: A World Cup Dataset for Global 3D Human Pose Estimation.- A Unified Framework for Gradient-based Saliency Map Generation of Black-box Models.- Language-Driven 6-DoF Grasp Detection Using Negative Prompt Guidance.- COIN-Matting: Confounder Intervention for Image Matting.- SHINE: Saliency-aware HIerarchical NEgative Ranking for Compositional Temporal Grounding.- Audio-driven Talking Face Generation with Stabilized Synchronization Loss.- Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in Instructional Videos.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.