Buch, Englisch, 256 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g
Reihe: Theory and Applications of Natural Language Processing
A Data-driven Methodology for Dialogue Management and Natural Language Generation
Buch, Englisch, 256 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g
Reihe: Theory and Applications of Natural Language Processing
ISBN: 978-3-642-43984-1
Verlag: Springer
This book is a unique contribution to that ongoing change. A new methodology for developing spoken dialogue systems is described in detail. The journey starts and ends with human behaviour in interaction, and explores methods for learning from the data, for building simulation environments for training and testing systems, and for evaluating the results. The detailed material covers: Spoken and Multimodal dialogue systems, Wizard-of-Oz data collection, User Simulation methods, Reinforcement Learning, and Evaluation methodologies.
The book is a research guide for students and researchers with a background in Computer Science, AI, or Machine Learning. It navigates through a detailed case study in data-driven methods for development and evaluation of spoken dialogue systems. Common challenges associated with this approach are discussed and example solutions are provided. This work provides insights, lessons, and inspiration for future research and development – not only for spoken dialogue systems in particular, but for data-driven approaches to human-machine interaction in general.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Spracherkennung, Sprachverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Informatik Natürliche Sprachen & Maschinelle Übersetzung
Weitere Infos & Material
1.Introduction.- 2.Background.- 3.Reinforcement Learning for Information Seeking dialogue strategies.- 4.The bootstrapping approach to developing Reinforcement Learning-based strategies.- 5.Data Collection in aWizard-of-Oz experiment.- 6.Building a simulated learning environment from Wizard-of-Oz data.- 7.Comparing Reinforcement and Supervised Learning of dialogue policies with real users.- 8.Meta-evaluation.- 9.Adaptive Natural Language Generation.- 10.Conclusion.- References.- Example Dialogues.- A.1.Wizard-of-Oz Example Dialogues.- A.2.Example Dialogues from Simulated Interaction.- A.3.Example Dialogues from User Testing.- Learned State-Action Mappings.- Index.