E-Book, Englisch, 1012 Seiten, eBook
Reihe: Springer Texts in Statistics
Lehmann / Romano Testing Statistical Hypotheses
4th Auflage 2022
ISBN: 978-3-030-70578-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 1012 Seiten, eBook
Reihe: Springer Texts in Statistics
ISBN: 978-3-030-70578-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
The third edition of Testing Statistical Hypotheses updates and expands upon the classic graduate text, emphasizing optimality theory for hypothesis testing and confidence sets. The principal additions include a rigorous treatment of large sample optimality, together with the requisite tools. In addition, an introduction to the theory of resampling methods such as the bootstrap is developed. The sections on multiple testing and goodness of fit testing are expanded. The text is suitable for Ph.D. students in statistics and includes over 300 new problems out of a total of more than 760.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1. The General Decision Problem.- 2. The Probability Background.- 3. Uniformly Most Powerful Tests.- 4. Unbiasedness: Theory and First Applications.- 5. Unbiasedness: Applications to Normal Distributions.- 6. Invariance.- 7. Linear Hypotheses.- 8. The Minimax Principle.- 9. Multiple Testing and Simultaneous Inference.- 10. Conditional Inference.- 11. Basic Large Sample Theory.- 12. Extensions of the CLT to Sums of Dependent Random Variables.- 13. Applications to Inference.- 14. Quadratic Mean Differentiable Families.- 15. Large Sample Optimality.- 16. Testing Goodness of Fit.- 17. Permutation and Randomization Tests.- 18. Bootstrap and Subsampling Methods.- A. Auxiliary Results.




