E-Book, Englisch, 166 Seiten, eBook
Reihe: Frontiers in Mathematics
Lee / Morales Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
1. Auflage 2022
ISBN: 978-3-031-12031-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 166 Seiten, eBook
Reihe: Frontiers in Mathematics
ISBN: 978-3-031-12031-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, flows, and group actions on these spaces. They also focus on the stability of certain dynamical objects like shifts, global attractors, and inertial manifolds. Applications to dissipative PDEs, such as the reaction-diffusion and Chafee-Infante equations, are explored in the second part. This text will be of interest to graduates students and researchers working in the areas of topological dynamics and PDEs.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Part I: Abstract Theory.- Gromov-Hausdorff distances.- Stability.- Continuity of Shift Operator.- Shadowing from Gromov-Hausdorff Viewpoint.- Part II: Applications to PDEs.- GH-Stability of Reaction Diffusion Equation.- Stability of Inertial Manifolds.- Stability of Chafee-Infante Equations.